质粒dna电泳与外源DNA用限制酶切割混合后还要加什么才能得到重组...

基因工程中,内切酶主要对外源DNA切割,为什么不会对重组导入后的质粒切割??_百度知道
基因工程中,内切酶主要对外源DNA切割,为什么不会对重组导入后的质粒切割??
提问者采纳
基工程般都体外进行内切酶酶切反应片段构建质粒再质粒导入细菌或者细胞通同源重组或者转座作用目片段导入基组所存楼主问题
提问者评价
原来是这样,感谢!
其他类似问题
按默认排序
其他1条回答
重组质粒导入受体细胞用内切酶所基工程涉及问题
基因工程的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁您现在的位置:&&>&&>&&>&&>&正文
bioedito…
外源DNA片段和线状质粒的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间 形成的新的共价链。如质粒的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。  DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这倦,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值以缓冲液的离子强度为转移,而后者可影响DNA的刚度。&&& i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j&i时,有利于重新环化;当i&j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等,1985)。 现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组的效率不仅受反应中末端的绝对浓度影响, 而且还受质粒和外源DNA末端的相对浓度的影响。当i是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线瘃质粒的量恒定(j:i=3)而带匹配末端的外源DNA的量递增时,这种嵌合体在连接反应之末的理论产量。
涉及带粘端的线状磷酸化质粒DNA的连接反应应包含:1)足量的载体DNA,以满足j:i&1和j:i&3。对一个职pUC18一般大小的质粒,这意味着连接反应中应含有载体DNA为20-60μg/ml。2)未端浓度等于或稍高于载体DNA的外源DNA,如外源DNA浓度比载体低得多,在效连接产物的数量会很低,这样就很难别小部分带重组抽粒的转化菌落。这种情况下,可考虑采用一些步骤来减少带非重组质粒的背景菌落。如用磷酸酶处理线状质粒DNA或发迹克隆策略以便通过定向克隆的方法构建重组质粒。&
(二)粘端连接
1)用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。2)按如下所述设立连接反应混合物:a.将0.1μl载体DNA转移到无菌微量中,加等摩尔量的外源DNA。b.加水至7.5μl,于45℃加温5分钟以使重新退炎的粘端解链,将混合物冷却到0℃。c.加入:10xT4噬菌体DNA连接酶缓冲液 1μlT4噬菌体NDA连接酶 0.1Weiss单位5mmol/L ATP 1μl于16℃温育1-4小时
10xT4噬菌体DNA连接酶缓冲液200mmol/L同Tris.Cl(pH7.6)50mmol/K MgCl250mmol/L二硫苏糖醇500μg/ml牛血清白蛋白(组分V.Sigma产品)(可用可不用)该缓训液应分装成小份,贮存于-20℃。&&& 另外,再设立两个对照反应,其中含有(1)只有质粒载体;(2)只有外源DNA片段。如果外源DNA量不足,每个连接反应可用50-100ng质粒DNA,并尽可能多加外源DNA,同时保持连接反应体积不超过10μl。可用至少3种不同方法来测定T4噬菌体DNA连接酶的活性。大多数制造厂商(除New England Biolabs公司外)现在都用Weiss等,11968)对该酶进行标化。1个Weiss单位是指在37℃下20分钏内催化1mmol32P从焦磷酸根置换到[γ,β-32P]ATP所需酶时,1个Weiss单位相当于0.2个用外切核酸酶耐受试验来定义的单位(Modrich和Lehman,1970)或者60个粘端单位(如New England Biolabs公司所定义)。因此,0.015Weiss单位的T4噬菌体DNA连接酶在16℃下30分钟内可使50%的λ噬菌体HindⅢ片段(5μg)得以连接。在本书中,T4噬菌体DNA连接酶一律用Weiss单位表示。\par 目前提供的T4噬菌体DNA连接酶均为浓溶液(1-5单位/μl),可用20mmol/L Tris.Cl(pH7.6)、60mmol/L KCl、5mmol/L二硫苏糖醇、500μg/ml牛血清白蛋白、50%甘稀释成100单位/ml的浓度置存。处于这种浓度并在这种缓冲液中的T4噬体DNA连接酶于-20℃保存3个月可保持稳定。3)每个样品各取1-2μl转化大肠杆菌感受态细胞。&
(三)平端DNA连接
  T4噬菌体DNA连接酶不同于大肠杆菌DNA连接酶,它可以催化平端DNA片段的连接(Sgaramella和Khorana,1972;Sgaramella和Ehrlich,1978),由于DNA很容易成为平端,所以这是一个极为有用的酶学物性。有了这样的物性,才能使任何DNA分子彼此相连。然而,相对而言,平端连接是低效反应,它要求以下4个条件:1)低浓度(0.5mmol/L)的ATP(Ferretti和Sgaranekka,1981)。2)不存在亚精胺一类的多胺。3)极高浓度的连接酶(50Weiss单位.ml)。4)高浓度的平端。1.凝聚剂  在反应混合物中加入一些可促进大分子群聚作用并可导致DNA分子凝聚成集体的物质,如聚乙二醇(Pheiffer和Zimmerman,1983;Zimmerman和Pheiffer,1983;ZimmermanT Harrison,1985)或氯化六氨全高钴(Rusche和Howard-Flanders,1985),可以使如何取得适当浓度的平端DNA的总是迎刃而解。在连接反应中,这些物质具有两作用:1)它们可使平端DNA的连接速率加大1-3个数量级,因此可使连接反应在酶DNA浓度不高的条件下进行。2)它们可以改变连接产物的分布,分子内连接受到抑制,所形成的连接产物一律是分子间连接的产物。这样,即使在有利于自身环化(j:i=10)的DNA浓度下,所有的DNA产物也将是线状多聚体。\par 在设立含凝聚剂的连接反应时,下列资料可供参考。(1)聚乙二醇(PEG8000)1)用去离子水配制的PEG8000贮存液(40%)分装成小份,冰冻保存,但加入连接反应混合物之前应将其融化并使其达到室温。在含15%PEG 8000的连接反应混合物中,对连接反刺激效应最为显著。除PEG 800和T4噬菌体DNA连接酶以外,其他所有连接混合物的组分应于0℃混合,然后加适当体积的PEG 8000(处于室温),混匀,加酶后于20℃进行温育。2)连接混合物中含0.5mmol/L ATP和5mmol/L MgCl2时对连接反应的刺激效应最为显著,甚至ATP浓度略有增加或MgCl2浓度略有降低,都会严重降低刺激的强度(Pheiffer和Zimmerman,1983)。3)浓度为15%的PEG 8000可刺激带粘端的DNA分子的连接效率提高至原来的10-100倍,反应的主产物是串联的多联体。4)PEG 8000可刺激短至8个核苷酸的合成寡聚物的平端连接,在这一方面,它与氯化六氨合高钴有所不同。(2)氯化六氨合高钴1)氯化六氨合高钴可用水配成10mmol/L贮存液贮存于-20℃,它对连接反应的刺激具有高度的浓度信赖性。当连接反应混合物中盐深度为1.0-1.5μmol/L时,其刺激作用最大。氯化六氨合高钴可使平端连接的效率大约提高到原来的50W部,但只能使端连接的效率提高到原来的5倍(Rusche和Howard-Flanders,1985)。2)在单价阳离子(30mmol/L KCl)存在下,它对平端连接仍有一定的刺激作用,但此时连接产物的分布有所改变。连接产物不再是清一色的分子间连接产物,相反,环状DNA将点尽优势。3)与PEG 8000不同,氯化六氨合高钴不能显著提高合成寡核苷酸的连接速率。
上海、北京及广州生物技术相关行业最新的职位信息,尽在生物招聘。
成功的秘诀
为你的职业拓宽道路
Eppendorf 荧光定量 PCR仪
ABI Stepone TM 实时定量PCR仪,最新的软件系统,界面友好,操作简单
各种厂家和各种规格的PCR产物纯化试剂盒
最全的定量PCR试剂
从引物设计到实验全程服务DNA重组技术(连接反应的策略)
百浩生物科技有限公司
DNA重组技术(连接反应的策略)
双击自动滚屏
发布者:百浩生物 发布时间: 阅读:<font color="#FF次
可以采用几种策略来进行外源DNA片段和质粒载体的连接。对此,可依据外源DNA片段未的性质,以及质粒载体与外源DNA上限制酸切位点的性质来作出选择。
带有各种未的外源DNA的克隆方法见下表:
────────────────────────────────────────────外源DNA片段所带未端   克隆的要求  说明
───────────────────────────────────────────平端    要求高浓度的DNA和连接酶
1)非重组体克隆的背景可能较高                                 
2)质粒和外源DNA拼命处的限制酶切位点消失                           
3)重组质粒会带人外源DNA的串联拷贝
用两种限制酶消化后  需纯化  
1)质粒与外源DNA拼命处的限制酶切位点常可保留不同的突出端2)非重组体克隆的背景较低质粒体以尽量提高连接效率3)外源DNA只以一个方向插入到重组质粒中
相同的突出端&&&& 线状质粒DNA常用磷酸酶处理
1)质粒与外源DNA接合处的限制酶切位点常可保留2)外源DNA会以两个方向插入3)重组质粒会带有外源DNA的串联拷贝
────────────────────────────────────────────&
1.带有非互补突出端的片段  用两种不同的限制酶进行消化可以产生带有非互补突出端的片段,刀就是最容蜴 克隆的片段。常用的大多数质粒载体均带有由几个不同限制酶的识别序列组成的多克隆位点。由于现有的多克隆位点如此多样,因而几乎总是能找到一种带有与外DNA片段未匹配的限制切位点的载体。于是,采用所谓的定向克隆即可将外源DNA片段插入到载体当中。例如:载体pUC19用BamHl和Hind-Ⅲ进行消化,然后,通过凝胶电泳或大小排阻凝胶层析纯化载体大片段,以使同芤下来的多克隆位点 缺小片段分开。于是,这一载体就可以同有与BamHl和HindⅢ所切出未端相匹配的粘端的外源DNA区段相连接。用得到的环状重级体化大肠杆菌,检查氨苄青霉素抗性。由于HindⅢ和BomHI的突出端不互补,载体片段不能有效地环化,所以转化大肠杆菌的效率也极低。因此,大多数具有氨苄表霉素抗性的细菌都含有带外源DNA区段的质业,外源DNA区段成为连接HindⅢ和BamHI位点的桥梁。当然,可以根据特定的外源DNA区段来改变限制酶的组合方式。  如要制备定向克隆载体,它尽量避免使用大多克隆位点上彼此直接相邻的限制酶切位点。这些位点中的一个被切开以后,第二个位点应位于线状DNA分子一端的几个碱基对之内,这样过于靠近末端,不利于多种限制酶的有效切割。正因为如此,所以务必检查两种限制酶对载体的消化是否完全。可采用以下两种检查方法: 1)用两种限制酶中的一种对载体进行消化,当所用限制酶的最挞缓冲液对离子强度的要求有不同时,应使用所要求的盐浓度较低的酶。消化完后,应通过凝胶电泳对一小份DNA进行检查。如所有质粒DNA均从环状转变为线状分子时,适当调整盐浓度,并加入第二种酶。同时,另行设立一个预实验,其中含有环状质粒DNA,并只加两种限制酶中的第二种。当预实验中的所有DNA都转变为线状(由凝胶电泳确定)时,通过凝胶电泳或尺坟排阻凝胶层析纯化质粒DNA大片段。\par 2)图1.7所示的是检查消化反应完全程度的一种更为严格的方法。对用第一个限制酶切割的一小份DNA进行末端标记,经离尽柱层析法纯化后,与未标记的线状DNA混合。然后用第二个酶消化,完全消化可使DNA小片段释放,它应带有50%的放射性活度,这可通过层析或通过凝胶电泳和放射自显影加以检测。
2。带有相同末端(平端或粘端)的片段&  带有相同末端(平端或粘端)的外源DNA片段必须克隆到具有匹配末端的线状质粒载体中。在连接反应中,外源DNA和质粒都可能发生环化,也有可能形成串联寡聚物。因此,必须仔细调整连接反应中两个DNA的浓度,以便使“正确”连接产物的数量达到最佳水平(见本节三).此外,常常使用碱性磷酸酶去除5'磷酸基团以抑制质粒DNA的自身连接和环化。在体外连接反应中,仅当一个核苷酸含5'磷酸基团而另一个含3'羟基时,T4噬菌体DNA连接酶可催化相邻核苷间形成磷酸二酯健。用细菌碱性磷酸酶(BAP)或牛小肠碱性磷酸酶(CIP)去除线状DNA两端的5'磷酸可以最大限度的地减少质粒DNA区段可有效地与去磷酸化质粒DNA相连接,产生一个含有两个切口的开环分子(图1.8)。因为环状DNA(即使是带切口的环状DNA)的转化效率比线状DNA高得多,所以大多数转化体都含有重组质粒。
3.带有平端的片段  外源DNA片段带平端时,还有一桩切外生枝的麻烦事,这就是蛱端的连接效率比起带有突出互袜末端的DNA要低得多。因此,涉及平端分子的连接反应所要求的T4噬菌体DNA连接酶的浓度和外源及质粒DNA的浓度都要高得多。还要说明的是,加入低浓度的如聚乙二醇一类的物质,常可提高这类反应的效率。&&
  如今,质粒载体中限制酶切位点的种类极为繁多,因而通常都有可能找到某种带限制酶切位点恰恰与外源DNA片段本身毫无二致的载体。这就具备一个不可比拟的优点,也应是可以用相应的限制酶消化重组质粒崦回收外源DNA。另一种方案,则是把片段插入到载体中能产生匹配末端的任何位点中。例如,识别不同的六核苷酸的限制酶BamHl和BglⅡ产生具有相同突出末端的限制酶切片段,这样用BglⅡ消化而制备的外源DNA片段可以克隆到用BanHl消化的质粒中。这通常会使接合序列不能被曾用于外源DNA或制备载体的任何一种酶所切开。然而很多清况下,用切点位于多克隆序列侧翼的限制酶进行消化,可将片段从重组质粒中摘出。偶尔在质粒的以及外源DNA两端的限制酶切位点之间,不可能找到“门当户对”的搭配关系。这时可用下面两种方案加以解决:1)在线状质粒末端和(或)外源DNA片段的末端接上合成在接头或衔接头。2)在得到控制的反应条件下,用大肠杆菌DNA聚合酶I Klenow片段部分补平带3'凹端的DNA片段。如第九章所讨论,这样常可以使那些不相匹配的限制酶切位点转变为互补末端,从而促进载体和外源DNA的连接。因为部分补平反应消除了同一分子两端彼此配对的能力,故连接反应过程中环化和自身寡聚化的机会也会有所降低(Hung和Wensink,1984;Zabarovsky和Allikmets,1986)。&& 
百浩生物科技有限公司Copyright & .电话:027-。E-mail:公司地址:湖北省武汉市新洲区邾城街道黄茂里170号相关知识点:
图甲、乙中的箭头表示三种限制性核酸内切酶的酶切位点,Ampr表示氨苄青霉素抗性基因,Ne r 表示新霉素抗性基因。下列叙述正确的是A.图甲中的质粒用BamHⅠ切割后,含有4个游离的磷酸基团B.在构建重组质粒时,可用PstⅠ和BamHⅠ切割质粒和外源DNAC.用PstⅠ和Hind III酶切,加入DN [氨苄青霉素、质粒、目的基因、重组质粒、游离、抗性基因、培养基、大肠杆菌]
图甲、乙中的箭头表示三种限制性核酸内切酶的酶切位点,Ampr表示氨苄青霉素抗性基因,Ne r 表示新霉素抗性基因。下列叙述正确的是 A.图甲中的质粒用BamHⅠ切割后,含有4个游离的磷酸基团 B.在构建重组质粒时,可用PstⅠ和BamHⅠ切割质粒和外源DNA C.用PstⅠ和Hind III酶切,加入DNA后可得到1种符合要求的重组质粒 D.导入目的基因的不可在含氨苄青霉素的培养基中生长
答案:C【解析】试题分析:图甲中的质粒用BamHⅠ切割后,得到一个DNA片段,含有2个游离的磷酸基团;A错误。在构建重组质粒时,可用PstⅠ和HindⅢ切割质粒和外源DNA,不能用BamHⅠ切割外源DNA,因为用BamHⅠ切割会破坏目的基因的结构;B错误。用PstⅠ切割后氨苄青霉素抗性基因结构已经被破坏,所以导入目的基因的不可在含氨苄青霉素的培养基中生长;D错误。考点:本题考查基因工程,意在考查知识的理解应用能力。
相关知识点:
[图甲、乙中的箭头表示三种限制性核酸内切酶的酶切位点,Ampr表示氨苄青霉素抗性基因,Ne r 表示新霉素抗性基因。下列叙述正确的是A.图甲中的质粒用BamHⅠ切割后,含有4个游离的磷酸基团B.在构建重组质粒时,可用PstⅠ和BamHⅠ切割质粒和外源DNAC.用PstⅠ和Hind III酶切,加入DN [氨苄青霉素、质粒、目的基因、重组质粒、游离、抗性基因、培养基、大肠杆菌]]相关内容:
频道总排行
频道本月排行能不能用EcoR I和BamH I两种限制酶处理质粒和外源DNA_百度知道
能不能用EcoR I和BamH I两种限制酶处理质粒和外源DNA
我有更好的答案
按默认排序
如果要同时使用这两种限制酶,一般情况是:1、外源DNA中的目的基因,一端要用EcoR I切割,另顶法厕剐丿溉搽税敞粳一端用BamH I;2、目的基因不会被这两种酶切断。
其他类似问题
外源dna的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁

我要回帖

更多关于 质粒dna电泳 的文章

 

随机推荐