普通情况下,在广播信道所使用的载波 信道c0中,独立专用控制信道在哪个时

GSM的信道类型和组成
- 考试归类_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
GSM的信道类型和组成
- 考试归类
上传于||文档简介
&&G​S​M​的​信​道​类​型​和​组​成​ ​ ​-​ ​考​试​归​类
阅读已结束,如果下载本文需要使用2下载券
想免费下载本文?
下载文档到电脑,查找使用更方便
还剩4页未读,继续阅读
你可能喜欢第3移动通信系统的无线传输技术 - 通信频道 -
  家庭: 
第3移动通信系统的无线传输技术
作者:it168
发表日期: 08:39
  内容导航:
  信息时代对通信系统的依赖越来越强,随着人们对移动通信需求和业务类型的增加,现有的移动通信系统已面临许多问题。由于用户的不断增加,现有系统的容量越来越显得不够,且现有系统很难提供新业务,全球覆盖、漫游业务更难以实现。为此,国际电联(ITU)提出了全球用一个统一的标准来实现第3代移动通信系统,即后来的IMT-2000。   日本于1997年初就着手第3代系统的标准化过程,并提出了一种基于宽带CDMA的方案,日本的行动促进了欧洲和美国的标准化进程。由于日本自然条件的限制,为了使自己能在未来的第3代移动通信市场中占有较大的份额,日本倾向于欧洲提出的宽带CDMA方案W-CDMA,日本方案将可能与欧洲方案统一,形成以欧日为代表的W-CDMA方案。在美国和韩国等国,由于基于IS-95标准的CD-MA第2代系统的研制成功,提出了以IS-95为基础向宽带发展的第3代移动通信系统,具有代表性的是宽带CDMA One,后来改为CDMA 2000。因此目前有关第3代移动通信系统无线传输技术(RTT)方案基本上分为以上两大派别。这两种方案中除了扩频码速率和下行链路结构上的不同之外,网络同步问题是两者的又一区别,W-CDMA系统中各小区是异步操作的,而CDMA 2000中各小区是同步操作的,后者采取同步操作的一个原因是考虑到与IS-95的兼容问题。当然在IMT-2000无线传输技术方案提交的过程中也有其它一些方案,但本文主要介绍W-CDMA和CDMA 2000这两种方案。 1 CDMA 2000    CDMA 2000方案中主要考虑到空中接口与IS-95的兼容问题,最大限度地沿用了IS-95的主要技术和技术思路。CDMA 2000的扩频带宽为N×1.25MHz(N=1,3,6,9,12),即1.25MHz,3.75MHz,7.5MHz,11.25MHz和15MHz。在该方案中,当N=1时,就是IS-95所支持的扩频带宽。在其它带宽上,为了和现存的IS-95系统载波正交地并存,除了采用直接扩频的方式外,还使用了多载波方式。从整个方案看,CDMA 2000可以看作为IS-95的升级版,所有IS-95的信令系统可以看作是CDMA 2000的一个子集,因此CDMA 2000与IS-95的信令系统、空中接口尽可能地保持一致或相似或共存,系统可以覆盖IS-95的工作频段。   CDMA 2000中定义了如下一些物理信道:前向、反向基本信道,前向、反向增补信道,前向、反向专用控制信道,前向、反向公共控制信道,前向、反向导频信道,前向寻呼信道,反向接入信道,前向专用辅助导频信道,前向公共辅助导频信道,前向同步信道。按照信道所传输的信息可以将这些物理信道分为专用信道和公共信道两类。前向专用物理信道以点对点的方式从基站向一个移动台传输信息。反向专用物理信道用来传输从某个移动台到基站的信息。公共物理信道也分为前向和反向公共物理信道,前向公共物理信道主要是以点对多点的形式由基站向一组移动台传输两种信息:广播式的管理信息(如系统参数)和发送给指定用户的定向信息(如寻呼信息)。反向公共物理信道包括反向接入信道和反向公共控制信道,主要以竞争方式向基站传输来自多个移动台的信息。   在前向链路中,考虑到和IS-95的兼容,CDMA 2000的前向同步和寻呼信道具有两种方式:共享同步和寻呼信道、宽带同步和寻呼信道。共享方式所提供的信道可以供CDMA 2000和IS-95使用,显然这种信道只能用在系统配置为覆盖方式情形下。而宽带信道方式是作为前向公共物理信道的一部分,并在整个信道带宽上进行调制,这种信道可以应用在覆盖配置和非覆盖配置的系统中。CDMA 2000中,系统为所有用户提供了一个前向公共导频信道。该导频信道是以0号Walsh码扩频过的全0序列。公共导频信道在基站以广播形式通过天线扇区传输,需要导频信号和用户数据能通过同样的路径传输,因此一个天线波束需要一个单独的辅助导频信道。在CDMA 2000中,当在基站使用天线阵列时,前向辅助导频信道就是为了这个目的而引入的,该信道和其它前向信道使用正交Walsh码码分复用在物理信道上。由于辅助导频信道上传输的是全0,而且该信道的引入占用了一个Walsh码道,减少了用于业务信道的可用正交Walsh码,所以辅助导频信道可以使用较长的Walsh序列。在保持码正交性的前提下,可用增加Walsh码长度的方法增加用于辅助导频信道的码数目。   CDMA 2000前向链路支持N×1.2288Mcps(N=1,3,6,9,12)。N=1时,与IS-95相似,但是使用了四相相移键控(QPSK)调制和快速闭环功率控制。当N≠1时,可以采用N个1.25MHz载波进行多载波传输,每个载波上的扩频切谱速率为1.2288Mcps(Mcps为每秒兆切谱数);也可以用切谱速率为N×1.2288Mcps在一个载波上对数据进行直接扩频。CDMA 2000中提供了两种前向数据信道:基本信道和增补信道。这两种信道使用正交码将它们分开,而且一般传输功率也不相同。CDMA 2000就是利用这两种信道处理用户同时发起的多业务问题的。前向基本信道上传输的是和IS-95中一样的变速率业务,在接收端需要进行速率检测,每种速率的业务用正交码道传输,帧周期为20ms和5ms两种。其中20ms帧可以支持IS-95中业务速率集合RS1和RS2。前向增补信道支持两种工作模式:第1种模式用于数据速率不超过14.4kbit/s的业务,在接收端用盲速率检测数据速率。该模式下所支持的数据速率是由IS-95中业务速率集合RS1和RS2所派生出来的业务速率。帧结构和20ms的前向基本信道相同;第2种模式是提供数据速率信息的。前向基本信道和增补信道的第1种模式所传输的数据用循环编码,而在增补信道的第2种模式中,高速数据可以采用循环码或Turbo Code的编码方式。值得一提的是前向增补信道可以根据实际情况有多个增补信道。      CDMA 2000系统中,数据采用了调整编码速率,符合重复以及序列重复等多种速率匹配的方法。系统中,每个基站可以有多个前向寻呼信道,各个寻呼信道用经过掩膜算法的长码加以区分。前向专用控制信道的帧周期也是5ms和20ms两种,并采用循环编码。CDMA 2000中为了减少小区内干扰,每个前向物理信道都经过正交的Walsh码调制。不同的信道使用的Walsh码字是不同的,所有经过Walsh正交复用的各个信道经过速率匹配、信道编码(循环码和Tur-bo Code)以及交织等处理后,通过用户长码进行扰码,再映射到I、Q路(对于多载波方式,首先将数据分为N路),分别进行信道增益、功控信息插入及Walsh扩频等处理。经过脉冲整形滤波器和射频调制后发射出去。如前所述,当N=1时,系统可以在现有的IS-95频段上进行射频调制,也可以在其它频段上调制,而其它新的CDMA 2000信道则要求和现有的IS-95信道正交地存在。      在反向链路上,反向专用信道除了反向导频信道常用外,反向基本信道、增补信道及专用信道根据实际业务需要可用可不用。各信道用正交Walsh码分开。导频信道和专用控制信道映射到I路,基本信道和增补信道映射到Q路。I、Q路的数据用伪随机数(PN)序列扩频。经脉冲整形滤波后,调制到射频发射。增补信道一般用2比特的Walsh码扩频,当需要用两个增补信道时,则采用4bit的Walsh码。如再需要增补信道,则可通过增加Walsh码的长度(最长为8bit),同时将其分别映射到I、Q路。反向导频信道上发送的是经过时分复用的功率控制信息和一个固定的参考值。基本信道传输IS-95支持的RS1和RS2速率。反向增补信道与前向增补信道一样,也是两种模式。基本信道和增补信道的信道编码方式与前向的编码方式相同。反向公共信道中,反向控制信道扩展了反向接入信道的能力,公共信道以时隙ALOHA方式工作。每个反向接入信道或反向公共控制信道都由一个接入前导部分和接入消息封装组成。前导部分为无数据承载的反向导频信道,长度为N×1.25ms(N≠0),N由基站指定。前导部分的长度由基站搜索PN码的速率、小区半径以及小区的多径特性所决定;接入消息封装包含接入或公共控制数据以及相关的导频信号。当移动台以某一种方式和基站通信时,与接入信道相关的反向导频信道和与反向公共控制信道相关的反向导频信道在结构上是相同的。它们的主要区别在于与接入信道相关的反向导频信道没有功率控制子信道,它传输的是全0。反向接入信道是以固定的9 600kbit/s或4 800kbit/s发送的,通常是9 600kbit/s。基站可以通过广播信号指定移动台接入信道的发送速率。而当移动台发送功率受限时,移动台也可以自动地将接入信道的速率降低到4 800kbit/s。但是在一个接入周期内,该速率保持不变。反向公共控制信道的数据速率为9.6kbit/s、19.2kbit/s和38.4kbit/s,在后2种速率下的发射功率分别比9.6kbit/s的发射功率高3dB和6dB。同样基站可以指定其发送速率,移动台可根据本身发射功率自动调制发送速率。 2 W-CDMA   1998年元月,欧洲电信标准委员会(ETSI)从各家公司提出的5种候选方案中选出两种方案:基于频分双工(FDD)的WCDMA和基于时分双工(TDD)的TD-CDMA方案。显然这两种方案不可能同时独立地提交给ITU(ITU起先的意图是实现全球标准统一化)。但是这两种方案各有优缺点,因此ET-SI正努力试图将这两种方案融为一体,形成一个FDD、TDD双模式共存的方案,期望这种方案能够灵活地适应不同环境、数据速率的变化以及各个运营商的要求。WCD-MA可能工作在覆盖面积较大的区域,提供中、低速业务,而TD-CDMA则主要侧重于业务繁重的小范围内,提供速率高达2Mbit/s的业务。该方案的基本参数为:1 920~1 980MHz频段分配给FDD上行链路,2 110~2 170MHz频段分配给FDD下行链路,而没有镜像频率的1 900~1 920MHz频段分配给TDD双工模式使用。基本带宽为5MHz,但其实际值可以200kHz为步长,根据需要在4.4MHz到5.2MHz之间调整。基本带宽可以扩展到10MHz、20MHz。基本扩频码速率为4.096Mcps,扩频码速率同样也可以扩展到8.192Mcps、16.384Mcps。下行链路通过时隙边界来划分。 2.1 W-CDMA的FDD模式 ――WCDMA      WCDMA定义了5种物理信道:专用物理数据信道,用于传输第2层以上的专用数据;专用物理控制信道,用于传输第1层产生的控制信息,如用于信道估计和相干检测的导频信息、功率控制信息、速率指示信息等;普通控制物理主信道和次信道,产生固定速率的下行信息,不产生功控信息和速率信息;物理随机接入信道,用于移动台向基站传输随机接入信息;主同步信道和次同步信道,主要用于小区搜索,该下行同步信号在每个时隙发送一次。   移动台通过物理随机接入信道向基站发送随机接入信息,它是以时隙ALOHA的方式工作。移动台仅在相对于小区广播控制信息帧的边界处,在一个固定时延后发送一个随机接入突发信息发起接入尝试。该信息由1ms前导部分和10ms消息部分组成,两者之间有0.25ms的间隙。因此用户发起随机接入时,相对于小区广播控制信息帧边界的时差为N×1.25ms,N=1,2,…,8,代表了随机接入时隙号,也就是说一帧内有8个随机接入时隙,在一个小区中,哪些特征序列可以使用的消息通过基站下行信道予以广播。前导部分由16个复数符号组成,消息部分的结构与上行专用物理信道相同,也分为数据和控制两部分,数据部分的扩频增益SF为256、128、64、32,而控制部分为256。数据部分包含16比特的移动台标识符(由移动台在发起随机接入时随机地选择)、服务要求和CRC校验等,也可以携带短用户信息。   在第3代移动通信系统中,存在对多业务的支持问题。多业务的设计是要求在保证频谱利用率的前提下,灵活地将不同服务质量(QOS)要求的各连接复接起来。WCDMA方案中采用了对不同QOS要求的业务进行不同的信道编码策略,以编码增益来换取对不同QOS要求的业务进行同样的处理方法,标准业务仅采用卷积编码,高质量业务在卷积编码的基础上增加了RS编码或选用Turbo Code的编码方法,而对于特定业务则在第1层不采用纠错编码而完全由高层采取差错控制。这样处理的结果使得各种业务变化为同一种数据,使后级的扩频和调制过程得到简化。   在宽带CDMA中,用来对付多径衰落的有效方法是采用RAKE接收机。WCDMA中,上下行信道都有导频信号,因而可以在接收端通过准确同步,利用本地导频信号和接收到的导频信号进行相关运算,估计信道,实现相干解调。 2.2 W-CDMA的TDD模式  ――TD-CDMA   大部分第3代移动通信系统的空中接口方案都是基于FDD模式的,也有一些是TDD模式的,如基于TDD的TD-CDMA。TD-CDMA中使用CDMA的目的是为了将不同的信道复用到一个TDMA时隙里。在第2代移动通信系统研究中,有关TDMA和CDMA的争论持续了很久,因为两种多址接入方式各有优缺点。但CDMA以其容量大、频带利用率高等特点使其在第3代移动通信系统中站稳了脚跟。在TD-CDMA系统中,除了CDMA的一些优点外,有一部分优点来自TDMA的使用: (1)由于使用了TDMA,使得上下行信道可以用TDD的复用模式,而这种模式的最大优点在于它可以工作在没有镜像频率的频段上,不像FDD模式对频段要求那么严格。 (2)TD-CDMA由TDMA带来的另一个好处在于用户被分配到不同的时隙中,这样就使得同时处于激活状态的用户数大大小于纯CDMA的方式。而且,由于用户数较少,就可以用联合检测和智能天线的方法减少用户间的干扰。 (3)TDMA的工作方式,可以将用户按照实际情况,重新分配其占用的时隙,使得用户可占用干扰较小的时隙,从而提供传输的可靠性。 (4)由于在TDMA中,用户处于非连续发射状态,因此用户除了监听它所属的基站信号外,还可以监听来自其它基站的信号,以便切换到信号更强的基站区域内工作。   同样TDD复用模式也给TD-CDMA带来了不少好处: (1)TDD模式可以灵活分配上下行信道之间的带宽,只需要调整上下行信道占有的时隙数即可。 (2)TDD模式中可以实现快速、精确的开环功率控制。在TDD中,上下行信道占用同样的频率,可以认为在一段时间内其信道特性相同,因此不仅阴影效应在上下行信道上引起的信号衰落是相关的,而且上下行信道在多径衰落上也是高度相关的,这样在TDD中仅需要开环功率控制即可。 (3)分集合并技术用于抗多径衰落非常有效,但是分集接收方法由于实现复杂,不适用于移动台。在TDD模式中,基站通过测量不同接收天线上的接收信号,选出最强的信号来解调信号。由于上下行信道衰落高度相关,基站选择上下行链路中接收信号最强的天线作为下一帧下行链路的发射天线,这样就使移动台用一个天线实现了选择性天线分集。 (4)在TDD模式下,发射和接收是分时进行的,因此可以不使用双通道滤波器,减少了模拟电路,因此TDD比FDD更适用于实现低功耗系统。   在TD-CDMA系统中,一个TDMA帧周期为10ms,分为16个时隙,每个时隙对应256个码片。为了通信能正常进行,不管上下行信道之间的带宽怎么分配,都至少有一个时隙分配给下行链路,即时隙0分配给下行链路作导引信号。系统有两种扩频方式: (1)多码传输   在这种方式下,扩频增益是固定的。在上行链路上,每个时隙可以有8个不同的数据突发,使用不同的扩频码将它们分开,而这8个突发可以分配给8个不同的用户,也可以分给同一个用户。如果一个用户占有了一个时隙内的多个突发,那么这个时隙内可以有多于8个的突发。在下行链路上,可以有8个以上的突发。 (2)变扩频增益方式   一个移动台使用一个扩频码,并以不同的扩频增益传输不同速率的数据。基站通过扩频码区分移动台,用一个突发广播一个移动台的扩频增益。如果一个移动台传输高速率的数据,它可能会占有多个时隙。   在TD-CDMA中,基本物理信道由时隙和时隙内的CDMA扩频码决定。对于同一个连接的多个服务可以各自进行信道编码、交织后,再映射到不同的基本物理信道上,这种情况下,各个QOS可以分别独立地控制,也可以以时分复用的方式在不同的信道编码方法处复用后,再映射到基本物理信道上。在TD-CDMA方案中,前向纠错编码与WCDMA的相似。该方案中在一个时隙内可以有K个正交的CDMA码,可以分配给一个或多个用户,一般每个数据符号对应Q=2 p个码片,其中1≤ p≤4,p可以按照实际干扰和服务要求选择。数据被分为两块填入相应的突发数据分组中,经QPSK调制和脉冲整形滤波器(滚降系数为0.22)进行滤波处理后再用正交扩频码扩频,经射频电路调制发射出去。TDD可以工作在至少能传输一路速率为4.096Mcps数据的任一频段的载频上,在接收端可以使用联合检测接收。   当然它有利也有弊。TDD非对称资源分配也会带来一些不利因素。假如移动台MS1、MS2分别在基站BS1、BS2所属小区内,当MS2处于BS2小区边缘时,MS2将以较大的发射功率传输信号给BS2,这时由于各小区上下行信道所占用的时隙不一定相同,MS1如果距离MS2较近,MS2则会干扰MS1的接收;另一方面,基站BS1的发射功率一般都会比MS2大,这样BS1发射的信号就会影响BS2对MS2信号的接收,因此在TDD资源分配算法中应避免这种情况的出现。 3 结束语   无线传输技术是IMT-2000系统中的重要组成部分。从目前的情况看,虽然全球统一标准化已不可能实现,但是未来的方向极有可能是多种不同的地区性第3代标准共存,现在的目标是尽量减少地区性标准的数目。从目前各国提交给I-TU的方案看,CDMA 2000由于是建立在IS-95空中接口的基础上,并利用已成熟的信息系统、越区算法的技术,因此,相对来说技术复杂程度低、风险小,有利于第3代双模手机的开发。1
【内容导航】
【相关文章】
&版权所有。未经许可,不得转载。
【责任编辑:telecom】
  网友评论
All Right Reserved.
北京皓辰网域网络信息技术有限公司. 版权所有 E-mail:&&提问回答都赚钱
> 问题详情
设某信道具有均匀的双边噪声功率谱密度Pn(f)=0.5×103WHz,在该信道中传输抑制载波的单边带(上边带)信号,并
悬赏:0&&答案豆&&&&提问人:匿名网友&&&&提问收益:0.00答案豆&&&&&&
设某信道具有均匀的双边噪声功率谱密度Pn(f)=0.5×10-3W/Hz,在该信道中传输抑制载波的单边带(上边带)信号,并设涮制信号m(t)的频带限制在5kHz,而载波是100kHz,已调信号功率是10kW。若接收机的输入信号在加至解调器之前,先经过带宽为5kHz的一理想带通滤波器滤波,试问:
发布时间:&&截止时间:
网友回答&(共0条)
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&2.00元收益
回答悬赏问题预计能赚取&91.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&4.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&91.00元收益
回答悬赏问题预计能赚取&4.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&2.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&2.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&91.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&91.00元收益
回答悬赏问题预计能赚取&4.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&4.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&1.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&91.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&51.00元收益
回答悬赏问题预计能赚取&51.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&3.00元收益
回答悬赏问题预计能赚取&1.00元收益
你可能喜欢的
[] [] [] [] [] [] [] [] [] [] [] []
请先输入下方的验证码查看最佳答案
图形验证:当日通信资讯
TD-HSDPA的研究与分析
摘要 在Node B中增加了MAC-hs实体、传输信道HS-DSCH、物理信道HS-SCCH、HS-SICH、HS-PDSCH,采用了共享信道、自适应编码调制、混合自动重传、快速调度等技术提高了TD-SCDMA的下行速率。
分组数据业务的支持能力是系统最重要的特点之一。随着和Internet的迅速发展,许多对流量和迟延要求较高的数据业务如视频、和下载等不断涌现。这些业务对移动通信系统提出了更高的需求,要求系统提供更高的传输速率和更小的传输时延。为了满足日益增长的分组业务需求,特别是下行业务需求,提出了技术并进行了标准化,HSDPA作为3GPP Release 5版本中的最主要特性(包括以及),于2002年完成了标准化。HSDPA通过采用AMC、HARQ以及高阶调制(16QAM)等技术,并在侧实现快速调度,从而可以快速自适应的反映用户信道的变化,获得较高的用户峰值速率和小区数据吞吐率。
TD-SCDMA是我国自主提出的国际3大移动通信标准之一。李小文教授为TD-SCDMA的提出作出了杰出贡献。3GPP制定了高速下行分组接入(HSDPA)协议,使得单载波下行速率理论值达到2.8 Mbit/s,若采用N点多载波技术,其下行速率能够达到N&2.8 Mbit/s,满足了人们视频、浏览网页、下载等功能。
1、TD-HSDPA协议栈结构
图1给出了HSDPA无线接口协议结构。从图中可以看出,Node B中新增加了MAC层的功能,增加了MAC-hs(hs表示HSDPA)功能模块,MAC-hs主要完成HARQ功能、调度和优先级处理。RNC继续保留原有的R99/R4的功能,包括RLC层的重传控制,而HARQ的重传机制在物理层和MAC层中实现,以达到快速调度和较高的小区吞吐量以及减少时延。
图1 HSDPA无线接口协议结构
2、TD-HSDPA关键技术
为了适应分组数据业务的特点,在TD-SCDMA中引入了共享信道的机制,多个用户共享无线资源。同时根据用户所处环境的不同,系统可以自适应的调整用户的调制方式以及编码速率,以提高系统吞吐量及无线资源效率。自适应编码调制技术(AMC,adaptive modulation and coding)、混合自动重传(HARQ,hybrid ARQ)和快速资源调度算法等技术,提高了高速下行分组数据速率和减少时延。
2.1 共享信道
考虑到分组业务的特性,突发性强,持续时间不确定,系统采用共享信道的方式为分组用户提供服务,用户通过时分或者码分的形式共享无线资源。系统定义了新的共享信道以及相应的上下行控制信道以支持TD-HSDPA特性。
2.2 自适应编码和调制技术(AMC)
AMC通过改变调制方式和信道编码率来调整传输速率,目前采用QPSK和16QAM两种调制方式。系统根据自身物理层能力和信道变化情况,建立一个在共享信道HS-DSCH中传输格式的编码调制格式集合(MCS),每个MCS中的传输格式包括传输数据编码速率和调制方式等参数,当信道条件发生变化时,系统会选择与信道条件对应的不同传输格式来适应信道变化并通知UE。具体为:根据无线信道变化选择合适的调制和编码方式,网络侧根据用户瞬时信道质量状况和目前的无线资源,选择最合适的下行链路调制和编码方式,使用户达到尽量高的数据吞吐率。当用户处于有利的通信地点时(如靠近Node B或存在视距链路),用户数据发送可以采用高阶调制和高速率的信道编码方式,例如:16QAM和3/4编码速率,从而得到高的峰值速率;而当用户处于不利的通信地点时(如位于小区边缘或者信道深衰落),网络侧则选取低阶调制方式和低速率的信道编码方案,例如:QPSK和1/4编码速率,来保证通信质量,通过改变调制和编码方式(MCS)以期待同信道所发生的变化保持一致,所需信道信息来自于接收机的反馈信息,采用AMC的优点:①合适位置的用户可以得到较高的数据率,提高了小区系统的平均吞吐量。②由于链自适应是基于调制编码方式的变化而不是基于发射功率的变化,因此降低了干扰变化。
2.3 HARQ技术
HARQ是HSDPA系统中采用的又一种新技术,它可以提高系统性能,并可灵活地调整有效编码速率,还可以补偿由于采用链路适配所带来的误码。HSDPA将AMC和HARQ技术结合起来可以达到更好的链路自适应效果。HSDPA先通过AMC提供粗略的数据速率选择方案,然后再使用HARQ技术来提供精确的速率调节,从而提高自适应调节的精度和提高资源利用率。HARQ机制本身的定义是将FEC和ARQ结合起来的一种差错控制方案,HARQ机制的形式很多,而HSDPA技术中主要是采用3种递增冗余的HARQ机制:TYPE-Ⅰ HARQ,TYPE-Ⅱ HARQ,TYPE&Ⅲ HARQ。其中:
TYPE-ⅠHARQ:主要采用了chase合并算法,这种算法是chase博士在1985年提出,发送方每次都发送整个完整的编码码字,接收端将每次收到的数据包与之前收到的所有数据包进行chase合并,组合成一个具有更强纠错能力的码字,从而达到递增冗余的目的。
TYPE-Ⅱ HARQ:又称为完全递增冗余机制,这种机制在1988年被首次提出,系统信息经过编码后,将编码比特按照一定的周期穿孔,根据码率兼容原则分批发送给接收端,接收端每次都进行码组合,将之前接收的所有比特组合形成更低码率的码字,从而达到递增冗余的目的。
TYPE-Ⅲ HARQ:又称为部分递增冗余机制,这种方案与TYPE-Ⅱ的主要区别在于,发送端每次发送的码字都是可以独立译码的码字,重传包不但包含与之前帧不同的冗余比特,还包含所有的系统比特。接收机每次也同样进行码组合,由于重传包中含有增加的冗余比特,同时系统比特每次都进行了优化选择,从而达到了递增冗余的目的。
出于对信道效率和调度灵活性的考虑,HARQ协议采用基于下行异步上行同步的机制。
UE侧负责数据接收、合并,根据UE内存决定采用何种方式、格式传输数据,在上行上主要是反馈ACK/NACK;下行控制信道的信令的参考主要有HARQ进程标识和新数据块标识指示。每个进程都有唯一的标识新数据块指示用来标明当前数据快是否为新以区别重传。在MAC-hs的数据包头内包含带内信令的相关数据,有优先级分类指示和数据块编号,优先级分类指示用来区分映射到同一物理信道上的不同逻辑信道,优先级数据块编号是标识新数据块在排序时用来识别数据块。
UTRAN侧,调度对具有以下属性的数据队列进行处理:依据1ub的帧协议内容而具有不同优先级,每个优先级的数据队列都配有RNC下来的时延属性参数,从Node B上报的可获得数据速率信息,调度依据以上参数决定新数据块和重传数据快的发送顺序。
UTRAN侧的HARQ进程功能是新数据块指示设置和处理ACK/NACK。
UE侧与HARQ协议有关的是HARQ实体,HARQ进程和重排序实体,UE侧的HARQ实体处理HARQ进程,将接收到的数据块根据HARQ进程标识分配到不同的HARQ进程中,每UE中只有一个实体,在每个TTI(5ms)中,每个HS-DSCH应该由一个HARQ进程。
UE侧的HARQ进程对新数据指示、数据块错误检测、状态报告和队列的优先级标识进行处理,根据是否有新数据块指示来判断接收到的数据块是否是新数据块,若是新数据块,则内存中等待合并的信息可以放弃,在错误检测中如果数据块有错则产生NACK并保留在内存中等待下一次的CC或者IR,若无错误,则数据块上报并产生ACK。数据块的错去检测是根据数快中的CRC校验来完成的,根据HARQ进程可产生传输状态报告、根据优先级标识,HARQ进程对队列进行处理。
重排序根据数据块的编号,对每个优先级队列内的数据块进行排序和上报,为了防止阻塞情况的发生,重排序实体可以根据基于时间和窗口的机制对部分连续的序列处理,如果信令发生错误,必须有响应的措施,当NACK被误认为ACK时,发送的HARQ协议不会重传,而丢失的数据由RLC处理;当ACK被误认为NACK时,系统可根据数据块的编号来判断,不需要额外处理,因其他问题而导致HS-SCCH被误解码或者其他原因导致状态报告丢失,系统可以按照NACK的情况来处理重新传输数据块。
在R99中,一旦数据未被正确接收,则需要由RNC重传数据,无论是新的还是重传的数据包,R99物理层的处理方式是相同的。而在HSDPA中,数据包首先被Node B接收并缓存(如图2)。即使数据包已经向用户发送,Node B仍然保存该数据包,一旦出现数据解码失败,无需RNC参与,Node B即可自重重传。这样,终端就能够合并每次传输的数据,从而获得新传输的数据的能量。如果由于信令差错导致物理层操作失败,那么还可以采用在物理层重传之上基于RNC的重传。
图2 Node B重传过程
2.4 快速调度
通过将数据的调度和重传移到Node B实现,可以更加快速的适应信道变化。基站根据UE的反馈,依据一定的调度准则选择用户,或者调整UE使用的调制方式编码速率,以优化系统性能。同时,调度以及数据重传在Node B实现,可以减小数据传输的时延。
为了支持HSDPA技术,TD-SCDMA新增加的信道如表1所示。
表1 TD-SCDMA新增加的信道
其中HS-DSCH是新增加的传输信道,用于承载高速下行数据,映射到HS-PDSCH上。为了支持HSDPA功能,UTRAN在下行链路上支持HS-PDSCH和HS-SCCH信道,在上行链路支持HS-SICH信道HS-PDSCH用于传送实际分组数据;HS-PDSCH使用扩频因子SF=16或者SF=1;调制技术采用QPSK和16QAM。HS-DSCH总是伴随一个下行DPCH信道和一到多个HS-SCCH信道。对支持在多个载波上同时接收HSDPA数据的UE(简称多载波HSDPA UE),HS-PDSCH可以在多个载波上同时发送,分配给同一UE的HS-PDSCH所在的多个载波应该是连续的。如果UE只支持在单载波上接收HSDPA数据(简称单载波HSDPA UE),则仅分配一个载波上的HS-PDSCH资源,并且HS-PDSCH与伴随DPCH在同一载波上。
HS-SCCH主要用于承载下行链路的信令信息。这些信令信息包括信道化码集、时隙信息、调制方式、传输块大小、HARQ进程号(HARQ Process ID)、冗余版本、新数据标志、HS-SCCH循环序列号和UE ID等。HS-SCCH使用扩频因子SF=16。
HS-SICH是一个上行物理信道,主要用于携带与HS-DSCH相关的信令信息。这些信令信息包括HARQ确认/否认应答(ACK/NACK)、下行链路的信道质量指示(CQI)。下行链路的信道质量指示(CQI)包括推荐调制方式(RMF)和推荐传输块大小(RTBS)。HS-SICH使用扩频因子SF=16。
对一个多载波HSDPA UE,网络侧可以为其分配一到多个HS-DSCH,对应每个载波的HS-DSCH都各自使用独立的HS-SCCH和HS-SICH用于信令信息的传输,用来控制同一UE同一载波上的HS-DSCH的HS-SCCH与HS-SICH需要在同一个载波上;每个HS-DSCH伴随一个HS-SCCH子集,其中HS-SCCH的数目范围可以从一个到最多4个,所有HS-DSCH伴随的HS-SCCH子集构成HS-SCCH集。对一个单载波HSDPA UE,网络侧为其分配的HS-SCCH集中只有一个HS-SCCH子集。
对多载波HSDPA UE,控制信道HS-SCCH、HS-SICH在各载波上的配置有两种方式:第一种:将控制同一个UE的所有HS-SCCH、HS-SICH控制信道,以及伴随DPCH信道均配置在同一个载波上,以实现UE多载波接收条件下在上行链路的单载波发送;第二种:控制同一个UE的同一载波的HS-SCCH与HS-SICH相对应,分别成组配置在所控制的HS-PDSCH信道所使用载波上,另外,伴随的DPCH信道也配置在其中的一个载波上。UTRAN应根据UE支持的上行链路同时发送载波数能力,采用合适的控制信道HS-SCCH、HS-SICH配置方式。
由位于Node B的MAC-hs层负责对资源的调度管理。Node B根据用户所处的无线环境和用户带宽需求等因素,采用时分和/或码分方式调度不同的用户,决定某一特定的TTI调度给一个或若干个指定用户使用。MAC-hs应支持每个TTI调度一次,支持在不同的TTI调度不同的用户。
HSDPA过程简单描述如下:基站首先通过HS-SCCH通知UE相应的HS-DSCH信息,包括用户标识、HS-PDSCH码道资源、调制方式等。然后相隔预定的时间后,在HS-DSCH上发送数据。UE则监控HS-SCCH,通过识别用户标识,判断该时刻信息是否是给自己的。如果是,则根据HS-SCCH携带的信息,接收并解调共享信道HS-DSCH,获得数据。然后根据测量结果和数据接收的情况,在HS-SICH信道,反馈数据块是否正确接收以及信道质量信息。基站根据反馈,可以决定是否重传数据并且可自适应的调整共享信道的调制和编码方式,如图2。
HSDPA资源分配必须建立在DPCH建立的基础上。图3是TD-HSDPA的资源分配流程图。
图3 TD-HSDPA的资源分配
HSDPA由于采用了MAC、HARQ以及高阶调制(16QAM)等技术,并在基站侧增加了MAC-hs模块,用于实现快速调度,从而可以快速自适应的反映用户信道的变化,获得较高的用户峰值速率和小区数据吞吐率,如图4。
图4 基站和终端之间的快速调度
2.5 快速小区选择(FCS)
利用FCS,通过上行信道UL,UE可以指示出小区内最好的下行链路DL来使用其提供的服务,当激活小区集合(active set)中有多个小区时,任何时候只有一个小区在发送,这样就潜在地减少了干扰,提高了系统容量。
MIMO是在基站发射端和终端接收端都使用多个,利用码重用技术增加其峰值吞吐量,码重用可以使分配的HS-DSCH的信道码/扰码对调制为单独数据流的M倍(M是发射天线的数目)。只要接收方有至少M个天线,那么具有相同信道码/扰码的数据流利用空间特性就可以被分辨出来,与码重用相结合所达到的中等数据率,而调制图更小(如用16QAM替代64QAM),为了达到相同的数据率使用单个发射天线的方案需要较大的调制图,而码重用技术使用较小的的Eb/No,这样就可以提高系统性能。资源分配之后,调度和重传就在基站和终端之间完成,如图4。
性能增益可以利用闭环MIMO技术,为此Node B需要利用来自于UE的反馈信息,如:如果Node B了解信道现状,the Node B could transmit on orthogonal eigebnodes以去除空间多址干扰。
3、TD-HSDPA资源分配和信道类型转换
单载波峰值速率的最高配置:当上下行时隙比例为1:5时,并将5个下行时隙(TS2~TS6)全部分配给HS-DSCH时可以获得2.8 Mbit/s的传输速率,此时将HS-SICH和associated Uplink DPCH以及PRACH&配置在TS1上,将HS-SCCH和associated Downlink DPCH、PCH、BCH、FACH、PICH、FPACH配置在TSO上。
单载波的典型配置:当上下行时隙比例为2:4时,并将4个下行时隙(TS2~TS5)全部分配给HS-DSCH时可以获得2.24 Mbit/s的传输速率,将HS-SCCH和associated Downlink DPCH配置到TS6上。
HS-SCCH的数目决定了每个TTI(5ms)最多可以调用的UE数目,若调度算法采用TTI为单位的时分调度,下行只需要配置HS-SCCH,上行只需配置HS-SICH,关于伴随DPCH(用来在传输数据时进行信令的传输),由于系统可用码道较少,为支持更多的UE使用HSDPA,可以考虑多个UE以时分方式共享一个DPCH,但是不宜过多,否则会影响上行信令传输及伴随DPCH之间的功控和同步,此外上下行均需预留一定的DPCH,一方面使切换到本小区的用户可以继续使用HS-DSCH,另一方面,如果正在使用HS-DSCH用户发起语音呼叫,不必中断传输数据而调整到其他载波接收语音服务。
当满足以下条件时可以考虑信道由DCH到HS-DSCH的转换,①系统有可用的伴随DPCH信道;②用户下行数据量大于某个阈值,上行业务量或请求的最大传输速率小于某个阈值;③用户的信道条件低于某个阈值。其中第三点考虑到信道条件很差时使用HSDPA可能很尝试见得不到调用或者即使被调用叶只能采用低阶调制和低速率编码,导致HSDPA资源浪费。
当满足以下条件时可以考虑信道由HS-DSCH到DCH或CEEL_PCH的转换,①下行数据的突发全部传完,如果上行没有数据传输,且用户结束服务,可直接转换到CEEL_PCH,若有用上行数据,下行信道类型可由HS-DSCH转换为DCH:②用户长时间得不到调度,下行信道类型可由HS-DSCH转换为DCH。
4、移动性过程
TD-HSDPA的移动过程和软切换不同,这里UE只与一个小区保持HS-DSCH连接,在CELL_DCH状态下,UE从源小区到目标小区的移动可根据UE的测量报告和网络侧的其他信息来作出决定,移动过程由网络侧与UE来主导控制,在R5中只支持网络侧控制的移动过程,具体地说,服务小区的变更是在基于DCH状态下的软切换过程,由RRC信令过程来完成。
服务小区变更时可保持专有物理信道配置和激活集,也可以和专有信道建立、释放、重配置结合在一起,也可以和接力切换时激活集更新结合在一起。
服务小区更新分为同步更新和异步更新。同步更新是发送和接收的开始和停止由网络侧控制,异步更新是UE和网络侧的数据发送和接收的开始和停止尽可能地快。
服务小区更新可在同一Node B的不同小区间更新,也可以在不同Node B的小区间更新,对UE来说是透明的,第二种过程还伴随服务HS-DSCH的Node B的重配置,此过程与小区更新是两个独立的过程。
服务小区更新依赖于UTRAN和UE对等无线链路之间的C轮询,以使发送方了解接收方接收数据的情况,设置在新小区发送的队列,因此目前基于轮询的服务小区更新只能在AM RLC方式下工作。
HSDPA在3GPP R5协议中引入,以支持更高的峰值速率和小区数据吞吐率。通过以上技术及过程在单载波TD-HSDPA中峰值速率达到2.8 Mbit/s。在n频点的基础上引入多载波HSDPA,峰值达到n&2.8 Mbit/s。在未来的通信中HSDPA将得到广泛的商用。
作者:王同 李小文& &来源:泰尔网
支持作者观点
反对作者观点
本文关键字: 9, 6, 1, 3, 10, 1, 4, 38, 1, 1, 8, 13, 3, 4
? ? ? ? ? ? ? ? ? ? ? ?
Copyright&
c114 All Rights Reserved
上海荧通网络信息技术有限公司版权所有
南方广告业务部: 021-51142 E-mail:
北方广告业务部: 010-33977 E-mail:shixinqi@
编辑部联系: 021-51142 E-mail:editor@服务热线: 021-51142

我要回帖

更多关于 广播信道 的文章

 

随机推荐