单微环谐振腔滤波器滤波器 什么意思

单环微环谐振滤波器的滤波特性分析(光电子课程设计)_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
单环微环谐振滤波器的滤波特性分析(光电子课程设计)
上传于||文档简介
&&光​电​子​课​程​设​计​,​单​环​微​环​谐​振​滤​波​器​的​滤​波​特​性​分​析​,​武​汉​理​工​大​学​光​电​子​课​程​设​计
阅读已结束,如果下载本文需要使用2下载券
想免费下载本文?
下载文档到电脑,查找使用更方便
还剩20页未读,继续阅读
你可能喜欢文章摘要信息
&|& &| &| &| &| &| &| &| &| &| &|&&&&|&
中国光学&2014,&7(2)&181-195&&ISSN:&&CN:&1400/O4
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
硅基混合表面等离子体纳米光波导及集成器件
管小伟, 吴昊, 戴道锌
浙江大学 光电信息工程学系 现代光学仪器国家重点实验室 光及电磁波研究中心, 浙江 杭州 310058
总结并展望了硅基混合表面等离子体纳米光波导及集成器件方面的理论和实验研究工作。首先介绍了几种硅基混合表面等离子体纳米光波导结构,其尺寸可小至100 nm以下,而传播长度达100 &m量级;其次介绍了基于硅基混合表面等离子体纳米光波导的功分器、偏振分束器和谐振器等集成器件,其尺寸为亚微米量级;最后探讨了硅基混合表面等离子体纳米光波导与硅纳米线光波导的耦合及对其进行增益补偿。
Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices
GUAN Xiao-wei, WU Hao, DAI Dao-xin
Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310058, China
In this paper, our recent theoretical and experimental results on silicon hybrid nanoplasmonic waveguides and integrated devices are reviewed. First, we present several types of silicon hybrid nanoplasmonic waveguides, which enable the confinement of optical field within the lateral scale of 100 nm, as well as a ~102 &m propagation distance. Second, several kinds of submicron photonic integrated devices like power splitters, ultra-compact polarization beam splitters and resonators are presented by using silicon hybrid nanoplasmonic waveguides. Finally, the coupling between silicon hybrid nanoplasmonic waveguides and silicon nanowires, as well as the loss compensation of silicon hybrid nanoplasmonic waveguides with gain mediums has also been discussed.
收稿日期&&修回日期&&网络版发布日期&&
国家高技术研究发展计划(863计划)资助项目(No.);国家自然科学基金资助项目(No.);教育部博士点基金资助项目(No.94)
通讯作者: 戴道锌,E-mail:dxdai@
作者简介: 管小伟(1988-),男,河南新蔡人,博士研究生,2009年于东南大学获得学士学位,主要从事硅纳米线波导和硅基混合表面等离子体纳米光波导及集成器件等方面的研究。E-mail:guanxiaowei@coer.
作者Email: dxdai@
参考文献:
[1] TSUCHIZAWA T, YAMADA K, FUKUDA H, et al.. Microphotonics devices based on silicon microfabrication technology[J]. IEEE J. Select. Top. Quant. Electron., ):232-240.
[2] ALMEIDA V R, XU Q, BARRIOS C A, et al.. Guiding and confining light in void nanostructure[J]. Opt. Lett., ):.
[3] THYLEN L, QIU M, ANAND S. Photonic crystals-a step towards integrated circuits for photonics[J]. Chemphyschem, ):.
[4] GOTO T, KATAGIRI Y, FUKUDA H, et al.. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates[J]. Appl. Phys. Lett., ):852-854.
[5] CHARBONNEAU R, LAHOUD N, MATTIUSSI G, et al.. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons[J]. Opt. Express, ):977-984.
[6] ZIA R, SELKER M D, CATRYSSE P B, et al.. Geometries and materials for subwavelength surface plasmon modes[J]. J. Opt. Soc. Am. A., ):.
[7] KUSUNOKI F, YOTSUYA T, TAKAHARA J, et al.. Propagation properties of guided waves in index-guided two-dimensional optical waveguides[J]. Appl. Phys. Lett., ):.
[8] PILE D F P, GRAMOTNEV D K. Plasmonic subwavelength waveguides:next to zero losses at sharp bends[J]. Opt. Lett., ):.
[9] XIAO S S, LIU L, QIU M. Resonator channel drop filters in a plasmon-polaritons metal[J]. Opt. Express., ):.
[10] WANG B, WANG G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides[J]. Opt. Lett., ):.
[11] TANAKA K, TANAKA M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J]. Appl. Phys. Lett., ):.
[12] TANAKA K, TANAKA M, SUGIYAMA T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides[J]. Opt. Express, ):256-266.
[13] LIU L, HAN Z H, HE S L. Novel surface plasmon waveguide for high integration[J]. Opt. Exprress, ):.
[14] VERONIS G, FAN S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Appl. Phys. Lett., ):.
[15] PILE D F P, GRAMOTNEV D K. Channel plasmon-polariton in a triangular groove on a metal surface[J]. Opt. Lett., ):.
[16] BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E, et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 83):508-511.
[17] 雷建国, 刘天航, 林景全, 等. 表面等离子体激元的若干新应用[J]. 中国光学与应用光学, ):432-439. LEI J G, LIU T H, LIN J Q, et al.. New application of surface plasmon polaritons[J]. Chinese J. Optics and Applied Optics, ):432-439.(in Chinese)
[18] 陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体纳米激光器技术及应用研究进展[J]. 中国光学, ):453-463. CHEN Y Y, TONG C ZH, QIN L, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, ):453-463.(in Chinese)
[19] ZIA R, SCHULLER J A, CHANDRAN A, et al. Plasmonics:the next chip-scale technology[J]. Materials Today, ):20-27.
[20] GUO X, MA Y, WANG Y, et al.. Nanowire plasmonic waveguides, circuits and devices[J]. Laser Photonics Reviews, ):855-881.
[21] WANG W, YANG Q, FAN F, et al.. Light propagation in curved silver nanowire plasmonic waveguides[J]. Nano Lett., ):.
[22] LUO H, LI Y, CUI H, et al.. Dielectric-loaded surface plasmon-polariton nanowaveguides fabricated by two-photon polymerization[J]. Appl. Phys. A., ):709-712.
[23] GUO X, QIU M, BAO J, et al.. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Lett., ):.
[24] OULTON R F, SORGER V J, GENOV D A, et al.. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photon, ):496-500.
[25] OULTON R F, SORGER V J, ZENTGRAF T, et al.. Plasmon lasers at deep subwavelength scale[J]. Nature, 64):629-632.
[26] DAI D, YANG L, HE S. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires[J]. IEEE J. Lightwave Technol., ):704-709.
[27] DAI D, HE S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Opt. Express, ):.
[28] FUJⅡ M, LEUTHOLD J, FREUDE W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides[J]. IEEE Photon. Technol. Lett., ):362-364.
[29] ALAM M Z, MEIER J, AITCHISON J S, et al.. Super mode propagation in low index medium[C]. Photonic Applications Systems Technologies Conference. Optical Society of America, 2007.
[30] ALAM M Z, MEIER J, AITCHISON J S, et al.. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends[J]. Opt. Express, ):.
[31] WANG Z, DAI D, SHI Y, et al.. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide[C]. Optical Fiber Communication Conference, OSA Technical Digest(CD), Optical Society of America, 2011.
[32] ZHU S, LO G Q, KWONG D L. Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform[J]. IEEE Photonics Technology Letters, ):.
[33] KIM J T, JU J J, PARK S, et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, 18, ):.
[34] HUANG Q, BAO F, HE S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement[J]. Optics Express, ):.
[35] DAI D, HE S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots[J]. Opt. Express, ):.
[36] KWON M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology[J]. Opt. Express, ):.
[37] GOYKHMAN I, DESIATOV B, LEVY U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide[J]. Appl. Phys. Lett., ):.
[38] KIM J T, JU J J, PARK S, et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, ):.
[39] SONG Y, WANG J, LI Q, et al.. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide[J]. Opt. Express, ):.
[40] ZHANG X Y, HU A, WEN J Z, et al.. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides[J]. Opt. Express, ):.
[41] BIAN Y, ZHENG Z, ZHAO X, et al.. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration[J]. Optics Express, ):.
[42] CHEN L, LI X, WANG G. A hybrid long-range plasmonic waveguide with sub-wavelength confinement[J]. Opt. Communications, 0-404.
[43] CHU H, LI E, BAI P, et al.. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components[J]. Appl. Phys. Lett., ):.
[44] BIAN Y, ZHENG Z, LIU Y, et al.. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement[J]. Opt. Express, ):.
[45] WU M, HAN Z, VAN V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale[J]. Opt. Express, ):.
[46] ZHU S, LO G Q, KWONG D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides[J]. Optics Express, ):.
[47] LOU F, WANG Z, DAI D, et al.. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides[J]. Appl. Phys. Lett., ):.
[48] GUAN X, CHEN P, WANG X, et al.. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides[C]. Asia Communications and Photonics Conference, OSA Technical Digest(online), Optical Society of America, 2012.
[49] WANG J, GUAN X, HE Y, et al.. Sub-&m2 power splitters by using silicon hybrid plasmonic waveguides[J]. Opt. Express, ):838-847.
[50] SONG Y, WANG J, YAN M, et al.. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter[J]. J. Optics, ):075002.
[51] SONG Y, WANG J, YAN M, et al.. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor[J]. J. Opt., ):075001.
[52] DAI D, SHI Y, HE S, et al.. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides[J]. Opt. Express, ):.
[53] ZHU S, LO G Q, KWONG D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths[J]. Optics Express, ):.
[54] ALAM M Z, AITCHISON J S, MOJAHEDI M. Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer[J]. Opt. Lett., ):55-57.
[55] SUN X, ALAM M Z, WAGNER S J, et al.. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform[J]. Opt. Lett., ):.
[56] CHEE J, ZHU S, LO G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide[J]. Opt. Express, ):.
[57] LOU F, DAI D, WOSINSKI L. Ultracompact polarization beam splitter based on a dielectric hybrid plasmonic dielectric coupler[J]. Opt. Lett., ):.
[58] CASPERS J N, ALAM M Z, MOJAHEDI M. Compact hybrid plasmonic polarization rotator[J]. Opt. Lett., ):.
[59] GUO L, HUO Y, HARRIS S J, et al.. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide[J]. IEEE Photon. Technol. Lett., ):.
[60] ZHOU G, WANG T, PAN C, et al.. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement[C]. Group IV Photonics(GFP), 2010 7th IEEE International Conference on, Beijing. IEEE, .
[61] SUN X, ZHOU L, LI X, et al.. Design and analysis of a phase modulator based on a metal polymer silicon hybrid plasmonic waveguide[J]. Appl. Optics, ):.
[62] ZHU S, LO G Q, KWONG D L. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators[J]. Opt. Express, ):.
[63] SUN R, DONG P, FENG N N, et al.. Horizontal single and multiple slot waveguides: optical transmission at lambda=1550 nm[J]. Opt. Express, ):.
[64] SHENG Z, DAI D, HE S. Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends[J]. Selected Topics in Quantum Electronics, IEEE J., ):.
[65] TOURNOISA P, LAUDE V. Negative group velocities in metal-film optical waveguides[J]. Optics Communications, ):41-45.
[66] HONG J M, RYU H H, PARK S R, et al.. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application[J]. IEEE Photon. Technol. Lett., ):72 74.
[67] YAMAZAKI T, AONO H, YAMAUCHI J, et al.. Coupled waveguide polarization splitter with slightly different core widths[J]. J. Lightwave Technol., ):.
[68] AUGUSTIN L M, HANFOUG R, VAN DER TOL J J G M, et al.. A compact integrated polarization splitter/converter in InGaAsP-InP[J]. IEEE Photon. Technol. Lett., ):.
[69] AO X, LIU L, LECH W, et al.. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J]. Appl. Phys. Lett., ):.
[70] GUAN X, WU H, SHI Y, et al.. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Opt. Lett., ): .
[71] LIANG D, FIORENTINO M, OKUMURA T, et al.. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects[J]. Opt. Express, 55-20364.
[72] DONG P, FENG N N, FENG D, et al.. GHz-bandwidth optical filters based on high-order silicon ring resonators[J]. Opt. Express, ):.
[73] XU Q, SCHMIDT B, PRADHAN S, et al.. Micrometre-scale silicon electro-optic modulator[J]. Nature, 40):325-327.
[74] WANG J, DAI D. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring[J]. Opt. Lett., ):.
[75] DEKKER R, USECHAK N, FORST M, et al.. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides[J]. J. Phys. D:Applied Physics, ):R249-R271.
[76] WANG X, LIN C Y, CHAKRAVARTY S, et al.. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides[J]. Opt. Lett., ):882-884.
[77] LI Q, SONG Y, ZHOU G, et al.. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss[J]. Opt. Lett., ):.
[78] DE LEON I, BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photon., ):382-387.
[79] NOGINOV M A, ZHU G, MAYY M, et al.. Stimulated emission of surface plasmon polaritons[J]. Phys. Rev. Lett., ):.
[80] AMBATI M, NAM S H, ULIN-AVILA E, et al.. Observation of stimulated emission of surface plasmon polaritons[J]. Nano Lett., ):.
[81] VAN DEN HOVEN G N, KOPER R J I M, POLMAN A, et al.. Net optical gain at 1.53 mm in Er-doped Al2O3 waveguides on silicon[J]. Appl. Phys. Lett., ):.
[82] GRANDIDIER J, DES FRANCS G C, MASSENOT S, et al.. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength[J]. Nano Letters, ):.
[83] NEZHAD M P, TETZ K, FAINMAN Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides[J]. Opt. Express, ):.
[84] GENOV D A, AMBATI M, ZHANG X. Surface plasmon amplification in planar metal films[J]. IEEE J. Quantum Electron., ):.
[85] ALAM M Z, MEIER J, AITCHISON J S, et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express, ):176-182.
[86] PLUM E, FEDOTOV V A, KUO P, et al.. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots[J]. Opt. Express, ):.
[87] DAI D, SHI Y, HE S, et al.. Gain enhancement in a Si hybrid plasmonic nano-waveguide with a low-index or high-index gain medium[J]. Opt. Express, ):.
本刊中的类似文章
by 中国光学温度测量范围加倍的单微环传感器--《物理学报》2014年15期
温度测量范围加倍的单微环传感器
【摘要】:本文提出了一种基于U形波导耦合单微环结构的新型SOI(绝缘体上硅)温度传感器.温度变化引起感温部位有效折射率和长度变化,导致传感器的输出光谱发生漂移.根据传输矩阵法和耦合模理论,设计了新型传感器模型,并且分析了感温部位不同时系统输出光谱特性.结果表明:当U形波导耦合单微环整体结构感温时,输出光谱无伪模,消光比达到31 dB,可作为最佳感温元件.相比于传统的双直波导耦合单微环结构,当U形波导的两个耦合点间的距离为微环周长的整数倍数时,FSR(自由光谱范围)可加倍至56 nm,灵敏度提高到89.2 pm/?C,测量范围为298—720 K,实现了SOI微环谐振器的高温测量.
【作者单位】:
【关键词】:
【基金】:
【分类号】:TP212.11【正文快照】:
1引言温度在日常生活,工农业生产以及工程应用等诸多方面都有着重要意义,并且飞行器,汽车,油田等应用领域对高温测试的要求不断增加.传统以硅为基底的温度传感器在高温时受本征激发温度的限制,通常只能达到200?C左右.而SOI[1,2]具有低功耗、抗电磁干扰、耐高温等优点,可以满足
欢迎:、、)
支持CAJ、PDF文件格式,仅支持PDF格式
&快捷付款方式
&订购知网充值卡
400-819-9993
《中国学术期刊(光盘版)》电子杂志社有限公司
同方知网数字出版技术股份有限公司
地址:北京清华大学 84-48信箱 知识超市公司
出版物经营许可证 新出发京批字第直0595号
订购热线:400-819-82499
服务热线:010--
在线咨询:
传真:010-
京公网安备75号武汉理工大学单环微环谐振滤波器的滤波特性分析 (1)_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
武汉理工大学单环微环谐振滤波器的滤波特性分析 (1)
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
下载文档到电脑,查找使用更方便
还剩20页未读,继续阅读
你可能喜欢

我要回帖

更多关于 谐振腔滤波器 的文章

 

随机推荐