半导体集成电路ic受命有多长

半导体集成电路_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
<span class="g-ico g-ico-star g-ico-star-on" style="width:%">
<span class="g-ico g-ico-star g-ico-star-on" style="width:%">
<span class="g-ico g-ico-star g-ico-star-on" style="width:%">
半导体集成电路
上传于||文档简介
&&半&#8203;导&#8203;体&#8203;集&#8203;成&#8203;电&#8203;路
阅读已结束,如果下载本文需要使用5下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩52页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢半导体集成电路的参考书目_百度知道半导体有什么好处?为什么IC(集成电路)要制作在半导体上?
听工程师经常提到IC,上网搜了一搜,IC是把一个电路中所需的、、和等元件及布线互连一起,制作在一小块或几小块晶片或基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。有没有网友通俗解释一下神马是IC,IC干嘛制作在半导体上。。。?
IC 指集成电路,做在半导体上是因为半导体是最适合实现晶体管的材料,而晶体管正是现在绝大多数电路的核心器件。不过这里我想多写一点东西,追本溯源从“电路”的开端开始。物理课上大家都听过麦克斯韦方程预言了电磁波的存在,然后赫兹的实验证明了电磁波存在,最后马可尼实现了无线电通信。最初的无线电接收机使用的是一类称为“检波器”的装置,然而检波器作为接收机的性能是非常糟糕的。首先它的频率响应很难控制,导致各种乱七八糟的干扰信号都会被触发检波器;另一方面它对信号强度的要求也很高,导致发射端的功率必须非常大。更糟的是当时的发射设备也非常简陋,只有火花塞之类的装置,这种设备只能发送类似方波的信号,而学过信号与系统的都知道方波的频谱有多宽……所以当时的无线电只能通过莫尔斯码交流,调频调幅什么的都是天方夜谭。为了解决这些问题,人们想了很多的方法,但是除了通过LC谐振电路实现了大功率正弦发生器之外,别的进展都不大。随着这一项改进,到了1907年,人们终于第一次成功实现了AM广播。然而1907年最重要的进展并不是AM广播,也不是同年发现的LED,而是真空三极管的发明,这个在灯泡的表亲构成了将来所有电路的基础。真空三极管的重要性在于这是第一个能够实现放大电路的器件。有了放大电路的加入使得无线通信对于发射机功率的要求一下降低了好几个数量级,同时通信距离也大大增加了。不过事情当然没有这么简单,真空三极管发明于1907年,但是直到1912年Armstrong (通信电路领域的祖师爷)发明再生接收机之前没有人意识到这个器件的威力。到了1917年Armstrong 终于通过正反馈实现了有实际用途的增益,并在此基础上完成了超外差式接收机,直到今天相当多的RF接收机依然在使用这一结构。为什么说三极管是放大电路的基础?中学电路三巨头:电阻、电容、电感都是二端器件,输入端输出端无法分开,必须共享负载。单纯使用这些元件只能组合出分压或是分流电路,而无法放大一个信号。而有了三极管,输出端与输入端得以分开,可以通过输入端控制输出端信号。再给输入端和输出端分配不同大小的负载,就可以实现大于1的增益。有了电子管,无线电终于得以真正的实用化。但是接下来,另一项需求将电路由真空管时代推向了固体电路时代——那就是计算机。电路领域大致可以分为两大块,一是通信(发射机、接收机),一是计算(处理器、寄存器)。大概到了二战的时代,电子管基本上已经可以满足当时的通信需求了。基于电子管的无线电设备虽然昂贵娇气,但是毕竟消耗量不大(Armstrong的超外差接收机只需要5个电子管),所以大家用着也没觉得有什么问题。然而二战期间计算需求急剧增加,传统的机械计算机已经不堪重负,电子计算机的需求异常迫切。接下来大家都知道了,美国人搞出了ENIAC,第一台图灵完全的电子计算机。ENIAC消耗了17000个以上的电子管,代价是重量接近30吨,以及几乎每天都会有损坏的电子管需要替换。这样的开销显然让人蛋疼,于是寻找一种更小、更廉价、更可靠的器件来代替电子管就成了研究者们的新目标。实际上金属氧化物晶体二极管早就已经发明了,ENIAC 里也使用了大量的二极管。可惜二极管和电阻电容电感一样,因为是二端器件所以没法单独完成放大或是计算。在1922年,苏联工程师Losev 利用红锌矿二极管的负阻抗特性成功实现了一个放大电路,可惜由于红锌矿的稀少所以没有实用化。后来据说Losev 曾进行过硅晶体管的研究,不过随后二战爆发,他死于列宁格勒围城战中,相关的研究记录也全部丢失了。在大洋彼岸,1925年加拿大的Lilienfeld 第一个提出了场效应管(结型场效应管,JFET)的设计理念,提出了在半导体材料上实现类似电子管功能的想法。然而受限与当时的工艺水平,这个想法一直没有实现。第一个将晶体三极管变为现实的,是巴丁和布拉顿,他们发明了双极晶体管(BJT),并与发明了P/N结二极管的肖克来一起获得了诺贝尔奖。最初的双极晶体管是点接触构造的,看过图片就知道这种结构有多蛋疼:不过一年之后(1948年),肖克来利用自己在P/N结二极管上的经验,设计了结型构造的双极性晶体管,这一结构立即成了BJT的标准结构,并服役至今。不过一年之后(1948年),肖克来利用自己在P/N结二极管上的经验,设计了结型构造的双极性晶体管,这一结构立即成了BJT的标准结构,并服役至今。此后,除了少数特殊领域(高温、大功率……)BJT 迅速取代了电子管,电子计算机的成本和体积都大大减小了。经历了这一飞跃之后,人们自然会开始想:由于电子计算机大部分器件都是晶体管组成的逻辑门,而晶体管,都是由半导体材料制造的。自然而然地,人们就会希望把所有晶体管集中在同一块半导体上,而不是制造一堆独立的晶体管再手工连接起来。由于电子计算机大部分器件都是晶体管组成的逻辑门,而晶体管,都是由半导体材料制造的。自然而然地,人们就会希望把所有晶体管集中在同一块半导体上,而不是制造一堆独立的晶体管再手工连接起来。接下来的尝试,就是将印刷电路板上做过的事情在半导体上再做一次。不过由于材质和工艺精度的要求,直到年,基尔比和诺伊斯才先后实现了集成电路——将晶体管、电阻、电容和导线集成在同一块半导体上。有点事,剩下的有空再写。------------据说是更新-----------第一代的集成电路和第一代晶体管一样,都是锗基电路。但是锗有一些令人蛋疼的问题:比如热稳定性,比如氧化物不致密,比如界面缺陷很多。这些问题导致锗基电路始终走不出实验室,只能在论文里刷刷存在感。于是研究者们顺着元素周期表向上爬了一格,看中了硅。硅和锗一比,简直就是半导体界的模范元素。热稳定性不错,有着致密、高介电常数的氧化物,可以轻易制备出界面缺陷极少的硅-氧化硅界面,地表含量极大,提纯非常容易……更妙的是,氧化硅不溶于水(氧化锗溶于水),也不溶于大多数的酸,这简直是和印刷电路板的腐蚀印刷技术一拍即合。结合的产物,就是延续至今的集成电路平面工艺。当然,集成电路的工艺精度要求比印刷电路板高了不止一个量级,直接套用印刷电路板的技术自然是不行的。于是集成电路自己发展出了一套光刻-腐蚀(刻蚀)-扩散(注入)-溅射(淀积)的工艺体系,这就是延续至今的集成电路平面工艺。所谓平面工艺,是因为所有工艺步骤都是对整个硅晶圆表面均匀进行,整个工艺完全是二维图形的操作。平面工艺制备BJT是有一些困难的:BJT是PNP(或是NPN)的三层结构,在使用平面工艺制备的时候,如果把三层纵向放,就需要浪费一定的面积给下面两层引出到表面,而且工艺步骤也较复杂。如果三层横向放置,由于BJT的基极(B级)必须非常薄,以当时的光刻和掺杂精度很难实现。BJT是PNP(或是NPN)的三层结构,在使用平面工艺制备的时候,如果把三层纵向放,就需要浪费一定的面积给下面两层引出到表面,而且工艺步骤也较复杂。如果三层横向放置,由于BJT的基极(B级)必须非常薄,以当时的光刻和掺杂精度很难实现。最后工艺界使用的纵向放置来实现BJT,以这个工艺为基础,集成电路进入了TTL(Transistor-Transistor Logic,晶体管-晶体管逻辑电路)时代。目前为止最后一次大的变革,是90年代CMOS(互补金属氧化物半导体)取代了TTL占据了市场主流。CMOS的基础是MOSFET(金属氧化物半导体场效应管),前文提到场效应管的历史可以追溯到20年代,但是MOSFET的诞生要等到1960年。新生的MOSFET很快取代了JFET,成为了场效应管的主流。60年代到90年代,面对如日中天的BJT,MOSFET始终被压制着。主要原因是BJT的电流更大,速度更快,耐压耐击穿更强。虽然MOSFET因为工艺步骤少、占用面积小,所以更便宜一些,但是始终没能占据主流。不过这将近30年的时间里,集成电路产业跟着戈登·摩尔的预言经历了史无前例的疯狂发展。工艺精度每1-2年就要前进一个节点(特征尺寸*0.7)。随着电路尺寸越来越小,芯片上集成的晶体管越来越多,芯片的功耗和发热已经成了一个非常严峻的问题。这个时候TTL和BJT电路的一个先天劣势就暴露了出来。BJT本质上,是一个输入电流控制输出电流,实现电流放大的三端器件。由于输入信号是电流,输入信号必须消耗功耗。而且BJT的特性和大量使用的电阻负载和偏置以及较高的工作电压,也使得TTL电路的关断漏电和静态功耗很难抑制。而MOSFET则不同,场效应管是一个通过输入电压控制输出电流的多端器件,它的输入漏电比BJT要小几个数量级。而且MOSFET的沟道电流要小于BJT(这也是MOSFET速度慢的原因之一),关断漏电上抑制非常好。最后,CMOS工艺彻底排除了电阻负载,使用PMOS、NMOS互为负载,实现了近乎于0的静态功耗。CMOS的结构也比TTL更简单,实现成本更低。CMOS的结构也比TTL更简单,实现成本更低。功耗和成本上的双重优势,最终压倒了TTL那越来越小的性能优势。CMOS占据了集成电路的主流地位。再之后的发展,更多的是在CMOS的基础上对材料和结构做一点小修小补(双阱工艺、strain、SOI衬底、HK-MG、FIN-FET)来延续摩尔定律。但是硅衬底和CMOS结构两大基础没有再发生变化。
绝缘体是0,导体是1,半导体才能有控制的表述0和1。有了0和1(二进制的世界),就有了语言,有了语言就可以表达逻辑,表述世界... ...老子说的,“生万物”。
简单来讲,导体导电,绝缘体不导电,而半导体,在不同条件下可以表现出导电或不导电的特性。这一特性可以用来制作出电阻,电容,开关管等一些具有设计者想要的IV特性的电路。ic,集成电路,即“采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构”。将ic做到半导体上是因为,半导体的特性,在现有的工艺条件下,可以实现电路的微小型,低功耗和高可靠度。
已有帐号?
无法登录?
社交帐号登录小木虫 --- 500万硕博科研人员喜爱的学术科研平台
&&查看话题
做半导体集成电路的近来看看,一个很不错的课件
做半导体集成电路的可以看看,一个很不错的课件
别忘了加星啊,大家多支持啊!
研究生必备与500万研究生在线互动!
扫描下载送金币
浏览器进程
登录小木虫
打开微信扫一扫
随时随地聊科研

我要回帖

更多关于 半导体集成电路 的文章

 

随机推荐