qq证件号码qq改密码证件格式不对对

一场Pokemon
Go,让全世界的小精灵师都暴露了。因此,在……
2016年初,一场人机大战点燃了人工智能芯片的争夺战,而……
今年,频频爆出摩尔定律将不再是制造工艺界的神话,虽说……
值农历新年佳节之际,很多半导体公司都借机召开了自己的……
21ic 2016年度采访之TE――将无人机与VR连接在一起
演讲人:彭煜歆时间: 10:00:00
演讲人:杜复旦时间: 10:00:00
演讲人:沈凯时间: 10:00:00
预算:¥10,000-¥50,000预算:¥50,000-¥100,000
基于STM32F103RB的两相混合式步进电机细分驱动器设计
[导读]摘要:根据两相混合式步进电机细分驱动原理,设计了一种基于STM32F103RB单片机的、细分度可调的步进电机驱动器。控制器采用电流矢量控制算法,通过双H桥驱动步进电机的两相转子。利用片内AD对电机转子电流进行采样,
摘要:根据两相混合式步进电机细分驱动原理,设计了一种基于STM32F103RB单片机的、细分度可调的步进电机驱动器。控制器采用电流矢量控制算法,通过双H桥驱动步进电机的两相转子。利用片内AD对电机转子电流进行采样,将矢量角度的目标值与测量值进行比较、调节,形成电流环,进而实现对整个周期电流阶梯的细分度控制。本文还介绍了该控制器的软硬件设计方案,并对该设计的实际电路进行了测试,结果表明控制器达到了设计目标,减少了低频振荡,提高了步进电机的控制性能。
关键词:STM32F103RB;两相混合式步进电机;开环矢量;细分可调
&&& 步进电机是一种运用广泛的控制电机,其特征是不使用位置反馈回路就能进行速度控制及定位控制,即所谓的电机开环控制。相对于伺服电机,步进电机有着成本低廉,控制简单等优点,尤其是两相混合式步进电机,在工业运动控制系统中有着广泛的应用。然而,传统的驱动方式,比如单电压驱动、高低电压驱动、斩波恒流驱动等等,虽然已经应用十分成熟,但是只限于低速运行,并且细分度一般限制在1/2步距,无法很好消除低频振荡,以及定位精度差等缺点。细分驱动的出现很好地弥补了这一缺点。
&&& 常见的细分控制器一般由MCU、专用逻辑驱动芯片以及功率驱动模块组成,这样的驱动器虽然能满足多细分驱动,但由于细分数量和效果会受到逻辑驱动芯片的影响,并且无法调整细分数和限流值、从而造成系统调试困难、矩频特性差等缺点。本文使用公司的32位,加上MOSFET驱动模块及电流传感模块,省去了逻辑驱动芯片。电机电流采用单片机内部AD采样,控制逻辑算法直接由单片机软件实现,MOSFET按照外部输入的脉冲速度及内部的时序来运行,从而大大简化了应用电路,提高了电路的通用性和驱动性能。
1 STM32F103RB单片机简述
&&&&STM32F103RB采用ARM公司最新的Cortex-M3内核,具有运行速度高、处理能力强、外设接口丰富等特点。由于其低廉的价格和很强的控制、运算性能,被广泛运用于电机控制。其具体性能指标如下:1)工作频率:最高72 MHz;工作温度范围:-40~+85℃;宽电压供电:2.0~3.6 V;2)128 k字节的闪存存储器和16 k的SRAM;3)12位16通道AD转换器具有双采样和保持功能,转换时间最短1&s。4)3个16位通用定时器,每个定时器有多达4个通道,用于输入捕获/输出比较/PWM或脉冲输出;1个16位带死区控制盒紧急刹车,用于电机控制的PWM高级控制定时器。
2 细分驱动原理
&&&&一般两相步进电机驱动分为单极型和双极性驱动两种,单极型驱动适用于6线制电机,这样的驱动方法等于将两相电机转变为四相电机,从表面上看步距角缺损减小了,实则是以牺牲电机的拖动转矩换来的,这样电机的带负载能力就会大大下降。而双极型驱动则主要针对两相四线(或者八线制)电机,一般机械步距角为50齿1.8&(也可为100齿0.9&价格较贵),故细分驱动技术主要是通过对步进电机的相电流进行阶梯化控制,使电机的以更小的单位步距角运行,从而减小步长和低频振荡。细分驱动的思想是把原来简单的对转子电流的通断过程改变为逐渐的改变各相绕组的电流大小和方向,使电机内部的空间合成磁场逐步改变,这样就能把原来的一个步距角的通电方式改变成为跟随电流的阶梯波,变成多步。具体的计算方法如下:
&&& 转矩T在一般情况下可表示为:
&&& T=KT&(-Iasin&+Ibcos&)&&&&&&& (1)
&&& 式子中KT在理想状态下的比例常数,&为转子的电角度位置。
&&& 如果两相步进电机的矩角特性是正弦波,则给绕组通入如下电流:
&&& Ia=Im&cos&
&&& Ib=Im&sin&&&&&&&&& (2)
&&& &为电机希望定位的电角度。
&&& 将式(2)代入式(1),则
&&& T=KT&Im&sin(&-&)&&&&& (3)
&&& 从而可见,两相混合式步进电机的细分就是控制两相绕组中的电流大小。理想状态下,电机内部的磁场为圆形空间旋转磁场,使步进电机按照交流同步电机的方式旋转。而AB相的理想电流为正弦波,而一般情况下通过阶梯波来模拟正弦波,从而达到恒转矩幅值的控制效果。而转矩的大小由合成磁场的矢量来决定,即相邻两个合成磁场的夹角为细分步距角。每当&变化一度,则步进电机走过1/360的电角度,例如一般的8细分控制,则&的步长为&/16。所以为了实现对两相混合式步进电机的恒转矩细分控制,就需要在电机的两相绕组中通以按正弦规律变化并互差90&相位的的两相电流,阶梯越细小,越接近于正弦波,步距角也越小,细分效果越好。
3 系统硬件设计
&&&&基于STM32F103RB驱动系统的硬件部分主要由信号输入端、电源输入端、电源模块、MOSFET驱动模块、H桥模块和采样放大模块组成。总体硬件图如图3所示。
3.1 输入信号
&&&&在硬件设计中,需要从外部输入3种信号:Enable使能信号、Dir电机转向信号以及Frequency速度脉冲信号。Enable信号为使能信号,为防止电机在停止时,定子绕组仍然通电造成的电机发热而设置的电机转子断电信号。Dir信号控制电机的转向;而Frequency信号为外部控制器件发出的方波脉冲信号,此信号的频率将决定电机的转速,3个控制信号均由光耦与内部隔离。驱动器上电前需通过拨码开关设置细分数和限流值,目前细分最多支持16细分,限流值一般为电机绕组可承受的最大电流的1.2倍左右,可以设置6档限流值。驱动器最大可承受4 A的电流。
3.2 系统电源
&&&&驱动系统的电源由一个外部输入的24~48V的直流电源输入接线端,然后通过BUCK降压芯片至5 V为内部光耦、比较器和运放供电,然后将5 V通过LDO降至3.3 V给MCU供电,这样MCU能获得相对干净的电源。另一路外部电源经过电阻分压,产生一个15 V电源用于MOSFET驱动芯片IR2010的供电。
3.3 驱动电路
&&& MOSFET驱动部分采用IR公司的IR2101S驱动芯片来驱动双H桥,从而靠双H桥来控制一个四线制步进电机。IR2101是IR公司生产的一款高性价比驱动器,使用方法非常简单,性价比高,能输出100~210 mA电流。IR2101驱动器可驱动一组功率管,整个功率电路需4片即可,这样不但节约制造成本,而且还提高系统稳定性。其驱动电路如图4所示。
3.4 电流检测和过流保护
&&&&本系统使用采样电阻来采集经过H桥(即电机的定子电流)。此处采样电阻阻值比较大时,会使电阻分压过大,造成H桥的低端电压高于地电压,影响系统的稳定性,而阻值太小又会使信号过小影响检测精度,所以本系统选用0.1&O电阻作为采样电阻。然后经过LMV358放大后,成为0~3 V的电压信号,在经过一个跟随器后,进入MCU片上AD,进行数模转换,放大后的信号还连接一个比较器用于过流保护。
4 系统软件设计
&&&&系统软件主程序框图如图5和图6所示,图5为主程序软件框图,图6为ADC中断软件流程图。
&&& 主程序处于死循环状态,每次外部信号Enable后,就会锁存外部的控制频率,方向,限流值,细分度等信号,然后进行内部参数初始化,等待刷新定时器计时完毕后就开始按照计时中的ADC中断及定时器中断完成的参数计算进行调节位置和速度。其中ADC在每个PWM的上升沿触发,采样两相电流进行处理,并且将其送给PI调节器调节PWM占空比,并且每次都会与限流值进行比较,一旦电流超过限流值,则自行执行脱机。这些程序在中断中完成,可以是系统更具有实时性。另外,每次走完一个阶梯的波形后,程序将触发timer3计数器,进行细分步数的计算,从而快的调整个周期的细分数。Timer3程序流程图如图7所示。
&&& 电机的细分步数为每次Enable之后方能调整,而细分值表则由计算好的正余弦参数存于MCU Flash中。
&&&&本系统采用电流实时采样并进行PI调节,使两相混合式步进电机的恒转矩运行,真正达到了电流矢量不变控制,在测试中能够有效的降低低频振荡,并且,在16细分的状态下控制工作,大幅度的减小了噪声和阻尼振荡,是一种有效的控制步进电机的手段。
从俄罗斯新闻网站看到的最新规格和上市时间,google翻译~
这次的M0分3个系列,F050 F051和F052
入门级微控制器STM32F0XX公司新生产线意法半导体将有以下特点:
- 48 MHz的微控制器的最大时钟频......关键字:
贸泽电子(Mouser Electronics) 开始分销Netduino 3电子平台,能够使商业硬件解决方案和个人电子项目快速上市,同时提供了最大的设计灵活性并降低了风险。最新版本的开源Netduino平台不但具有让先前版本广受欢迎的最佳......关键字:
单片机现在可谓是铺天盖地,种类繁多,让开发者们应接不暇,发展也是相当的迅速,从上世纪80年代,由当时的4位8位发展到现在的各种高速单片机……各个厂商们也在速度、内存、功能上此起彼伏,参差不齐~~同时涌现出一大批拥有代表性单片机的厂商:Atm......关键字:
STM32 H7新系列产品成为ARM Cortex-M内核微控制器性能新标杆;大容量片上存储器,丰富的通信外设,为物联网设备提供先进安全服务......关键字:
北京时间8月1日消息,据科技网站Mashable报道,无论你是否喜欢Apple Watch,每天给它充电都是无法逃避的固定任务。虽然Apple
Watch已经实现了无线充电,但对许多人来说这种方式依然逼格不够。现在,这群挑剔的用户终......关键字:
我 要 评 论
热门关键词&>&&>&&>&&>&两相四线步进电机驱动C程序
两相四线步进电机驱动C程序
上传大小:1KB
两相步进电机的驱动,控制小车的前进后退,左拐,右拐。
综合评分:3.6(35位用户评分)
所需积分:8
下载次数:162
审核通过送C币
创建者:caozhy
创建者:qq_
课程推荐相关知识库
上传者其他资源上传者专辑
开发技术热门标签
VIP会员动态
您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:!
android服务器底层网络模块的设计方法
所需积分:0
剩余积分:720
您当前C币:0
可兑换下载积分:0
兑换下载分:
兑换失败,您当前C币不够,请先充值C币
消耗C币:0
你当前的下载分为234。
两相四线步进电机驱动C程序
会员到期时间:
剩余下载次数:
你还不是VIP会员
开通VIP会员权限,免积分下载
你下载资源过于频繁,请输入验证码
您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:!
若举报审核通过,可奖励20下载分
被举报人:
举报的资源分:
请选择类型
资源无法下载
资源无法使用
标题与实际内容不符
含有危害国家安全内容
含有反动色情等内容
含广告内容
版权问题,侵犯个人或公司的版权
*详细原因:两相4线步进电机驱动_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
两相4线步进电机驱动
上传于|0|0|文档简介
&&本文介绍了两相4线步进电机驱动的电路原理。
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩5页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢两相四线步进电机驱动程序 - 单片机论坛 -
中国电子技术论坛 -
最好最受欢迎电子论坛!
后使用快捷导航没有帐号?
两相四线步进电机驱动程序
15:10:48  
51单片机作为控制器,tb6560作为驱动器,驱动步进电机加速、减速、正反转.急求大神指教、、、
10:43:42  
我也在 求。。。。。。。。。。。。。。。。。
助理工程师
10:46:07  
这个我也在做,呵呵
07:35:15  
我做的是用一个单片机控制3个步进电机
08:26:23  
真的是高手啊&&学习一下
21:09:12  
找到了~~~~~~~~~~~
等待验证会员
19:49:31  
本帖最后由
19:53 编辑
这是我自己写的简单步进电机正反转程序,也是tb6560作为驱动器。用的是正点原子开发板,我一直想写个能加减速的程序,找不到好的资料参考,希望有高手指点
19:46 上传
点击文件名下载附件
下载积分: 积分 -1 分
1.92 MB, 下载次数: 431, 下载积分: 积分 -1 分
19:46 上传
点击文件名下载附件
下载积分: 积分 -1 分
542.94 KB, 下载次数: 73, 下载积分: 积分 -1 分
19:50 上传
点击文件名下载附件
下载积分: 积分 -1 分
1.92 MB, 下载次数: 459, 下载积分: 积分 -1 分
17:17:06  
下来看看 是不是12864显示的
13:10:50  
有没有STM32的程序?
17:41:56  
我在写一个7.5°的两相四线驱动,理论是48步转一圈的,但是实际12步就转一圈了,试试你这个程序行不行?
17:44:37  
你这个程序不是步进电机的啊
FPGA是当前很热门的技术。
发展到现在,FPGA器件由早期的纯逻辑粘合发展到如今的可编程片上系统(SOC),FPGA应用的领域愈发广泛,开发难度和复杂度也越来越大。
那么究竟如何才能高效学习好FPGA技术呢?
每天选一个需要解决的问题,大家一起来帮忙。
授人玫瑰,手有余香
USB Type-C终结了长期以来USB需要通过试错法来多次重插的历史,一个接口搞定了电能、数据、音视频数据三种传输需求,形成接口和电缆以及快速充电协议的大统一。
预计2017年全球所有新发布手机都将采用USB Type-C接口和USB PD供电协议,将将引发手机行业革命。
Powered by

我要回帖

更多关于 qq找回密码身份证格式 的文章

 

随机推荐