请问cpu热电源功率不够烧主板超过主板支持的cpu热电源功率不够烧主板会怎样?烧坏cpu和主板?打不开?降频率?

如何持续降低CPU的功耗(比如AMD95W的CPU如何降低一下功耗)?_百度知道
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。
如何持续降低CPU的功耗(比如AMD95W的CPU如何降低一下功耗)?
(低功耗AMDR的CPU市场上不好买)望懂的的大师回答,严禁水军和复制党,不懂的绕道。回答准确且详细的加高分!谢谢,想降低一下功耗该怎么办,感觉功率太大了用AMD945的CPU功耗95W?有的说降低CPU电压和频率可以降功耗是真的
降低CPU功耗的几种方法:CPU降频使用;降低CPU电压;使用降温软件,动态调整CPU工作频率;使用高效的冷却方式,如热管冷却、水冷散热等;定期清理CPU的灰尘。
采纳率:83%
来自团队:
进BIOS打开即可这个技术类似于INTER的动态节能技术,让CPU在不需要全负荷工作的时候自动降低频率功耗没办法降低,楼主不超频就可以了如果主板支持酷又冷技术的话最好,也就降低了功耗,主板驱动安装一下酷又冷软件。而需要全负荷运行大型软件时
本回答被提问者采纳
在BIOS里设置,具体方法可以百度你降低CPU频率就可以了,设置为AUTO就可以了主板会根据频率来自动降低电压的,95W功率并不是指额定就是95W的,在CPU使用率低时会自动降低的,不用担心,电压最好不要自己降
用多了了0.3度电,但是,前提是你的cpu都在一只工作且都使用率是百分之一百。也就是说最多也只是用多了0.3度电,不过你不能超频。还有,兄弟你的问题有问题,呵呵。貌似我这句话也有问题。 好啦 ,你看清楚 95w 比 65w 省电 , 下次要注意哦。如果省电的话 降频把。 要知道能量是不会凭空消失和凭空出现的。
95W还好啦, 还有125W的呢, 如果想省电可以安装AMD Cool And Quite驱动, 并调节ACPI为节能模式.AMD CNQ就是在CPU闲置状态时降低CPU的频率, 以便降低CPU功耗. BIOS里也要把CNQ 设成enable.CPU运行频率越高耗电越大. 所谓的95W就是CPU 100%运行时的最大功耗.降低CPU电压的话建议幅度在50毫伏也就是0.05V, 别以为降低50毫伏省不了多少电哦.用95W CPU举例, 如果CPU工作电压为1.4V, 那么流过CPU的电流就是95/1.4=67.8A.所以你降低50毫伏那么省电就是3W哦, 不过设定CPU电压可能会引起CPU不稳定. 所以不建议设定. 30W x10=0.3千瓦时, 就是0.3度电 这是在CPU满负荷运行时的省电度数, 但这种情况只是极限考虑, 因为不可能CPU 10个小时都是满负荷运行. 所以呢, 这些都是理论值, 实际值可能会有差异但无法计算...
其他2条回答
为您推荐:
其他类似问题
您可能关注的内容
功耗的相关知识
换一换
回答问题,赢新手礼包多少相供电够用? CPU超频VS主板相数
日 00:53&&&出处:&& 作者:张伟(编辑)&&
  泡泡网主板频道7月4日&在高端主板市场,超频一直是经典的话题,随着主板BIOS的完善,超频变得越来越简单,用户可以根据自己的需求,抑或是极限超频玩家为追求更高的频率,将的性能一步步挖掘出来,于是超频这个重点又开始向另一边倾斜--主板。
  主板的设计和用料直接影响CPU的超频性能,不过在面对超频性能和主板成本,成本优先使得大部分用户不会用到顶级的主板来配合,实际的超频重任更多的落在千元级左右的市场。
   单就主板而言,影响CPU超频性能的因素非常多,如供电规格和设计、芯片组、MosFET、BIOS设计等,另外CPU散热器也会对超频起到至关重要的作用。而本文就从这些比较直观的现象来探讨主板成本(供电相数)对CPU超频性能的影响,帮助大家选择合适的主板来超频。
   关于显卡供电相数解析参考:
并联电流翻倍 主板供电原理解析
   主板CPU供电部分一般是由多相并联控制电路组成,每一相供电是由输入、输出、控制三部分组成。输入部分元器件包括一个电感线圈、一个电容;输出部分有一个电感线圈、一个电容;控制部分则由一个PWM控制芯片、两个场效应管组成。
典型的4+1相主板供电回路
   在CPU正常运行时,由ATX电源提供的+12V电源先通过由一个电感线圈和电容组成的L1振荡电路进行滤波处理,然后经过PMW控制芯片与两个晶体管导通后达到需要的输出电压。
单相供电回路
   这个时候得到的输出电压由于纹滤较高需要滤波,于是经过L2和C2组成的滤波电路后,就可以达到CPU所需要的Vcore,这个电压也就是CPU真实的电压,可以通过CPU检测工具(CPU-Z、AIDA64)或者在主板BIOS里面查看到。
   多相供电就是将多个单相电路并联而成的,提供更大的电流以满足CPU的供电需求。而发展到现在由于CPU的高度整合,需要数组不同的电流以满足计算核心、控制器、显示核心等的需求,这个时候就需要使用多路PWM控制器或者多颗PWM控制器。&
   单向供电向多相供电迁移参考:
主板厂商狂堆供电相数为哪般?
   一般来说主板的供电和散热与成本是直接挂钩的,当然不同的主板会有不同的设计风格,但都大同小异。而供电相数成为一个非常直观的供电规格体现方式,但这并不能绝对代表CPU超频等多方面性能差异。
Ivy Bridge最大TDP只有77W
   而随着工艺的进步,处理器的每瓦性能比得到了极大的提升,整体来看处理器的功耗也得到了下降,最新的Ivy Bridge处理器TDP只有77W,而移动版本会更低,一些产品甚至只有17W。
早期的三相供电主板已经不见了踪影
   而在主板市场,超频系列主板的供电相数并没有随着处理器工艺改进而降低规格,早期的主板两、三相供电设计现在也几乎不存在了,尽管供电元件电气性能、可靠性都得到了极大的提升。
   而本文枚举多款市售LGA 1155主板,产品覆盖高中低端产品线,最低的CPU核心供电只有3相,而最高的达到了24相,直观的反应出供电相数对于CPU超频性能影响。
   华硕技嘉极限供电:
12+2+1相供电:技嘉G1.Snipper 3
   技嘉G1.Snipper 3主板专为极限发烧游戏而打造的,超频性能也非常出色,主板基于IR3567 PWM芯片,支持2组供电调节,最高支持6+2相供电设计。
   G1.Snipper 3主板则提供了高达15相供电设计,其中CPU为12相为一路,另外三相为一路,上面我们已经介绍了IR3567 PWM仅支持6+2相供电设计,那主板是怎么支持这15相供电的呢?
   原来在PWM芯片和MOSFET部分主板还为配备了7颗IR3598驱动IC(正面4颗,背面3颗),可以管理14相供电,另外1相单独并联,那么其中的6颗驱动IC管理的12相供电就为CPU核心服务,1颗驱动IC管理的2相为显示核心供电,最后单独的1相为IO供电。
主板稳定在4.7GHz
   用料方面,主板全部采用了铁素体电感、一上一下SOP-8 MOSFET和日本化工固态电容。
3+2相供电:技嘉GA-Z77M-D3H
   技嘉GA-Z77M-D3H是一款中规中矩的Z77芯片组主板,产品基于Intersil ISL98953 PWM芯片提供2组供电调节,最高支持3+2相供电设计。
   Intersil ISL98953 PWM芯片最大支持1.52V电压输出,最大电流为90A,支持VR12供电规范。
   而GA-Z77M-D3H主板则完全基于这一规格来设计,采用了3相CPU核心供电,另外2相为显示核心供电。
主板稳定在4.5GHz
   用料方面,GA-Z77M-D3H采用了铁素体电感,并配备一上二下SOP-8封装MOSFET,以及日本化工固态电容。
24+2相供电:技嘉GA-Z68X-UD7
   技嘉GA-Z68X-UD7主板定位旗舰产品,主板基于Intersil IR6366 PWM和Intersil ISL6322G PWM芯片,Intersil IR6366支持两组电压调节,其中一路支持双6相供电调节,另一路支持单相调节。
   Intersil IR6366支持双6相供电调节,配合驱动IC可以实现最高24相CPU核心供电,最大输出电流高达200A,最大电压为1.52V。而Intersil ISL6322G PWM最高支持四相供电,最大电流为50A。
   GA-Z68X-UD7主板就是使用了24相核心供电设计,最高可以支持304W的功率输出,可以为极限超频玩家提供充足的电力供应。
主板稳定在4.9GHz
   用料方面核心供电部分全部使用了DrMOS供电,配合铁素体电感和日本化工固态电容。
4+2+1相供电:技嘉GA-Z68XP-UD3
   技嘉GA-Z68XP-UD3基于Intersil ISL6322G PWM+Intersil ISL6364 PWM芯片的组合,其中Intersil ISL6322G PWM支持VR11供电规范,负责显示核心供电,而Intersil ISL6364 PWM支持最新的VR12供电规范,负责CPU核心供电。
   Intersil ISL6322G PWM芯片提供1组供电调节,整合了驱动IC,最高支持四相供电,最大电压为1.99375V,最大电流为50A。Intersil ISL6364 PWM芯片提供2组供电调节,最大支持4+1相供电组合,最大输出电流为1.52V,最大电流为130A。
   技嘉GA-Z68XP-UD3主板则采用了2(ISL6322G)+4(ISL6364)+1(ISL6364)相供电设计,其中核心供电为4相。
稳定在4.5GHz
   用料方面核心4相供电和1相IO供电采用了整合式DrMOS供电设计,而2相显示核心供电则采用了SOP-8 MOSFET设计。
8+2相供电:技嘉GA-P67A-UD3R
   技嘉GA-P67A-UD3R采用了和GA-Z68XP-UD3相同的芯片解决方案,都是基于Intersil ISL6322G PWM+Intersil ISL6364 PWM芯片。
   所不同的是GA-P67A-UD3R采用了10相供电设计,由于P67并不支持显示输出,所以无需配备显示核心供电模块,这样Intersil ISL6364 PWM负责CPU核心的供电,而Intersil ISL6322G PWM负责IO部分供电。
   同技嘉G1.Snipper 3一样,GA-P67A-UD3R也使用了驱动IC扩展供电相数,主板共使用了四颗驱动IC管理8相供电,另外两相负责IO供电的则单独并联。也就是主板为8+2相供电设计。
主板稳定在4.6GHz
   用料方面核心8相供电采用了整合式DrMOS供电设计,而1相IO供电则采用了SOP-8 MOSFET设计。
12+4相供电:华硕P8Z77-V RPO
   华硕P8Z77-V RPO主板采用的供电PWM芯片为EPU,实际型号被打磨掉,我们无从得知产品供电规格支持。
   从主板上来看主板采用了共16相供电设计,而华硕官方给出的说明为12+4,其中12相为CPU核心供电,我们知道目前没有一颗PWM芯片可以直接支持12相供电,所以华硕也采用了驱动IC级联的方式,主板配备了8颗驱动IC来管理16相供电。
主板稳定在4.8GHz
   用料方面也就是华硕官方宣传的超级合金供电,包括合金低阻抗电感、一上一下SOP-8 MOSFET和富士通固态电容。
8+4相供电:华硕TUF Z77
   华硕TUF Z77主板采用的PWM芯片同样是EPU,我们依然无法窥测具体的供电支持规格。
   从主板上来看主板采用了共12相供电设计,华硕官方给出的说明为8+4,其中8相为CPU核心供电,另外华硕也采用了6颗驱动IC级联的方式管理12相供电。
主板稳定在4.7GHz
   用料方面华硕7系列主板基本都采用了相似的数字供电引擎,配合超级合金供电系统,包括合金低阻抗电感、一上一下SOP-8 MOSFET和富士通固态电容。
8+2+2相供电:华擎Z77 Extreme6
   华擎Z77 Extreme6主板基于Intersil ISL6364 PWM芯片,支持2路Intersil ISL6364 PWM芯片提供2组供电调节,最大支持6+1相供电组合,最大输出电流为1.52V,最大电流为130A。
   而主板上我们可以看到为12相设计,自然的也要用到驱动IC管理,每2相使用1颗驱动IC,其中4颗驱动IC用于一路,而在这一路还并联了两项独立的两相供电,另外一颗用于一路。
   而主板的供电就是这样:4×2+2+1×2的组合,其中8相(4×2)为CPU核心供电,2相负责IO供电,最后的2相(1×2)负责显示核心供电。
主板稳定在4.7GHz
   用料方面,供电采用了低阻抗电感、一上一下SOP-8 MOSFET和黄金电容。
测试平台和测试方法介绍
   了解了以上7款主板的详细供电规格后,下面就开始逐一进行超频测试,读者会发现这些主板全部基于Intel LGA 1155接口设计,而为了保证测试CPU的兼容性,测试使用的CPU并没有使用最新的Core i7 3770K旗舰,而是Core i7 2700K。
   由于此次超频测试主要全面面向用户实际应用,CPU超频后采用LinX工具对CPU进行满负载测试以确保稳定,所以这些超频成绩可能和之前一些测试的超频频率要低一些。
   CPU散热器使用了酷冷X6 Elite,产品配备了6根6mm热管和12cm大尺寸,以保证出色的散热效果,这也更加符合超频用户的配置。
酷冷X6 Elite散热器
   除了简单的频率测试,我们再次引入了超频后的功耗,因为超频会导致功耗的不断攀升,这些是超频用户不得不考虑的问题。
最大差距达0.4GHz 主板超频性能全面比拼
   超频测试中,所有主板关闭CPU的节能技术,并只调节处理器的倍频和电压,保持100MHz外频不变。所取的成绩全部经过了LinX的极限负载测试,虽然不及CPU默认频率时稳定,但是已经非常可靠了,在实际应用中出现蓝屏的可能性很小。
超频可以为CPU带来近乎直线的性能提升
   所有测试的主板基本都具备4.8GHz启动系统的能力,除了一款技嘉GA-Z77M-D3H(主板无法调节核心电压),不过要使其稳定,仅有两款产品能够通过LinX测试,由于时间的限制,所有测试并没有跑完20轮的测试,因为在实际测试中我们发现不稳定蓝屏现象基本发生在第一个循环中。
   从上面的图表我们可以看到成绩最差的GA-Z68XP-UD3和GA-Z77M-D3H最终稳定在4.5GHz,其中GA-Z68XP-UD3稍微出色一些,在4.6GHz时已经可以通过大部分严格的测试,包括CinBenchmark 11.5、wPrime,不过在LinX极限负载测试下还是败下阵来,而GA-Z77M-D3H不能在4.6GHz下通过多核测试,主要由于电流达不到要求,不过另外一个原因是CPU的电压无法调节。
   接下来的主板基本都具备不错的供电规格,产品的价格基本已经达到了1000元或更多,这些主板大部分可以稳定运行在4.7GHz,仅有一款GA-P67A-UD3R稍弱,不过在4.7GHz下可以通过CinBenchmark 11.5、wPrime等的测试。
   在往上就是GA-Z68X-UD7和P8Z77-V PRO,其中GA-Z68X-UD7在经过一番调试后可以稳定在4.9GHz,不过此时的负载电压高达1.52V,而P8Z77-V PRO表现也不错,可以在1.37V稳定运行在4.8GHz,值得注意的是这两款产品都具备5GHz通过大部分的负载测试,甚至包括CinBenchmark 11.5,不过面对LinX的高压依然败下阵来。
   更多Core i7 2700K超频请参考:
频率决定能耗 超频功耗对比测试
   理论上CPU的功耗基本和频率成正比,不过由于不同主板供电设计不尽相同,导致即使在同一频率下会出现不同的电压才能稳定,另外即在相同的电压下,功耗也有一定的差别。
   功耗测试中,使用电流钳表测试通过CPU +12V的电流值以及实时电压值得出功耗(此时CPU运行LinX),另外为了更加真实的反应用户的使用习惯,除了技嘉GA-Z68X-UD7主板,其余所有产品均加压不超过1.4V,毕竟长时间使用过高的电压会对CPU的体质造成伤害。
   测试中不出意外的,技嘉GA-Z68X-UD7主板使用Core i7 2700K超频4.9GHz功耗高达195W,这基本是目前一套终端平台的游戏满载功耗了,从一个侧面也反映出超频是要付出不小的电力损失,特别是近期执行阶梯电价后尤其要注意。
   通过我们也注意到供电最简单的GA-Z77M-D3H主板将Core i7 2700K超频至4.5GHz极限负载功耗只有123W,低了将近60%,相对来说非常节能。
总结:主板供电相数够用就好
   通过上面8款主板的测试,相信消费者已经对想要购买什么样的超频主板有了自己的想法了,而最终的选择除了与主板的超频能力挂钩,还受到了产品价格等因素的影响。
   ● 极限超频用户
   对于极限超频玩家来说无疑供电规格最强的主板是其无二的选择,而事实上大部分用户并不会选择极致供电规格的主板,另外消费者还会受到主板扩展性能、接口等因素的影响,而千元左右的LGA 1155主板基本是目前超频用户选择最多的产品,产品已经具备和极限高规格主板一拼的实力了。
   上面的图表很直观的给出了8款主板的CPU核心供电相数,最少与最多的主板相差达八倍,主流1000元左右的主板主要集中在8相供电,这些产品基本具备超频稳定在4.7GHz的能力。
   ● 主流用户
   至于主流用户选择的产品就很多了,基本10相左右的供电就可以满足大部分的超频需求,甚至升级水冷超频问题也不大,这些产品基本具备在1.3x V的电压下将CPU超频至4.7/4.8GHz,对于保守的用户而言,降频至4.5/4.6GHz则可以运行在更低的电压,对于长期超频使用非常有帮助。
   ● 入门用户
   而对于预算比较有限的用户来说,千元以下的主板也具备基本的超频能力,稳定4.5GHz问题不大,这些主板搭配Core i5系列不锁倍频处理器性价比更加突出。
   ● 使用寿命
   对于超频后的使用寿命,这个虽然无法去验证,但是从实际满载测试中CPU供电部分的MOSFET、电感、电容的温度都不是很高,直观感觉是不烫手,属于正常的温度工作范围内。而就电流负载来说,现在的电感最大负载可到50A,而理想负载在25A-30A之间,以10相供电来说可以稳定提供330W左右的输入,而即使最低的三相供电也可以提供120W的稳定功率输入,从这个值来判断,CPU的工作状态是非常安全的。
   本次测试来看,CPU的超频远不需要动辄数十相的供电,至少对于非极限超频用户来说没有多大必要,这一点从24相核心供电的技嘉GA-Z68X-UD7 4.9GHz的满载频率就可以看出,实际上此时的CPU电压已经高达1.52V,对于CPU长期使用来说并不安全。
   ● 厂商寄语
   从目前各大一线疯狂堆砌供电相数来看,实际并不是消费者的需求,更多的是厂商借以实现差异化竞争。这样的后果就是消费者不得不为这浪费的供电相数而买单,从实际的用户使用来看,大部分用户实际使用中超频频率基本低于4.5GHz,对于这个频率做工扎实的8相供电主板完全可以满足要求,另外实际LGA 1155超频处理器(带K)的产品市场销量并不大,远没有供电相数超过10相的主板多,也就是说很大一部分主板基本没有用武之地,至少就超频来说,当然不否认供电规格高的主板,相应的扩展功能、散热等都得到了提高,但这无形中将中高端主板的成本又拉高了一截。
   而对于用户来说,大部分的不超频用户使用6(4+2)相供电就相当富余,特别是IVB处理器,4-5(3+2/3+1)相就可以满足需求。从这一点来看那些H77、B75主板供电超过6相的基本就是在浪费资源了,而这些成本会直接转嫁到消费者身上。■
主板芯片组:Intel Z77 CPU插槽:LGA 1155 主板结构:ATX 内存类型:DDR3 集成芯片:声卡/网卡 USB接口:2个USB2.0接口, 4个USB3.0……
扯扯车精品文章推荐真相侠:温度会影响CPU性能及稳定性吗?
来源:pconline 原创&
作者:真相侠&
责任编辑:chenziwei&
1温度是否会影响CPU性能及稳定性?  【PConline 真相侠】六月盛夏,这种酷暑天气折腾人同时也折腾着PC里的DIY硬件。为了散热,有的人机箱里塞满了风扇,还不惜花重金购入CPU散热器,为的就是&把CPU满载温度压到60度以下&&&有人说散热不好会影响CPU性能及稳定性,这是真的么?如果是真的,要多高的温度才算是&安全线&?今天我们就来验证一下。&■为什么大家都纠结CPU温度?  电子产品想长期稳定运作必须要有一个适宜的温度区间,高温会加速电子元件老化,甚至造成不可逆的硬件受损,这些已经常识了,对于CPU这一类精密电子产品而言温度控制更加重要&&在以前&拼频率&的时代,如何有效散发处理器带来的高热量就成了大家十分关注的话题,特别是夏天,必须将CPU温度压到一定程度下机器才能稳定运行。在以前,散热不良对CPU来说就是灾难  但也有人认为,现在CPU的制程工艺和架构这么先进,CPU的功耗、发热量相比以往已经大幅度降低,除了超频之外,普通消费者已经没必要去纠结CPU温度了。到底谁对谁错,这篇文章会告诉你答案。&■散热效果直接影响CPU温度状况  为了便于比较,我们必须得到两组以上不同的CPU温度数据,为此我们把室温控制在24℃,然后通过搭配不同的散热器来绘制不同的CPU温度曲线。除此之外还要考虑到AMD与Intel平台差异性的影响:它们的制程工艺、核心架构、频率控制策略都完全不同,需要分开单独测试。&  如果你购买的是盒装CPU,在包装里配备有原装CPU风扇,这种应该是目前用户量最大的CPU散热器了吧。盒装CPU一般比散片贵100-200元,除去三年售后服务之外剩余的就是这散热器的价值,今天的测试我们也会以原装散热器的散热效果作为基准,极限情况下我们还会拆去原装CPU风扇电源,直接做被动散热。  独立散热器选择了安钛克铜虎C40,市场价150元左右。塔式结构,四热管铜底散热,理论上散热能力应该比原装风扇强不少。Intel独显平台AMD整合平台  Intel平台选择Core i5-4670K + GTX660,这是目前比较主流的中高端配置;AMD方面则选用最具代表性的APU A10-5800K整合平台。注意我们这次试验并不是为了对比AMD与Intel性能,而是在两个独立的平台分别讨论温度对各自CPU性能以及稳定性的影响。&整合平台处理器已经包括了GPU,发热量会不会比独显平台大?  对于同一款处理器,理论上确实用于独显平台时的发热量要低于整合平台,但是这个差距几乎可以忽略不计&&CPU发热源主要还是来自内部缓存。而且本次的测试方案均主要针对CPU,GPU一直处于空闲状态,对测试结果不会产生影响。&2测试平台以及测试方案介绍测试平台及测试方案介绍:Intel平台CPUIntel&Core i5-4670K(4核/4线程,默认频率使用)主板华硕Z87-A内存DDR3-显卡NVIDIA GTX660散热器①、Intel原装散热器②、Intel原装散热器(无风扇)③、安钛克铜虎C40散热器AMD平台CPUA10-5800K(4核/4线程,默认频率使用)主板华硕F2A85-M Pro内存DDR3-(双通道,分配1GB显存)显卡HD7660D散热器①、AMD原装散热器②、AMD原装散热器(无风扇)③、安钛克铜虎C40散热器测试方法测试方法室温:24℃不同CPU温度对稳定性的影响:  搭配不同的散热器,开机后待机5分钟,记录空载温度,然后运行Prime95烤机30分钟,每隔5分钟记录CPU温度,用热成像仪拍摄满载最高温;不同温度对CPU性能的影响  搭配不同的散热器,运行wPrime满线程运算1024M圆周率,记录最后得分和温度情况。Intel平台配置AMD平台配置使用Prime95第二个选项进行烤机测试  实验分为两部分,首先测试的是不同温度对CPU稳定性的影响,通过搭配不同的散热器来造成不同的满载温度,极限情况下还会直接拔除CPU风扇做纯粹的被动散热,所用的测试软件是Prime95;性能测试方面,软件选择wPrime,在四线程全开条件下计算1024M圆周率,记录最后得分和CPU温度。&什么是&烤机&  &烤机&其实就是对电脑进行持续高强度的使用,用于测试机器稳定性。现在已经有不少专门的烤机软件,可以迅速暴力地占用平台资源,大大缩短烤机时间。根据测试的侧重点不同,烤机软件一般会针对不同的硬件来编写,例如用Prime95测试CPU、用Memtest测试内存、用Furmark测试显卡等等。&&3Intel平台实测:自动降频防止过热1、Intel平台1-1、不同温度对CPU稳定性的影响测试截图(图为无风扇极限烤机,i5-4670K崩了两个核心)  温度对CPU的稳定性有影响吗?这是肯定有的,不过倒不至于死机蓝屏&&现在的处理器为了防止CPU过热,都设定了安全温度区间,例如i5-4670K就设定了当温度超过88℃时自动降频。上图为无风扇极限状态下i5-4670K烤机测试,可以看到i5-4670K已经崩了两个核心,CPU满载频率被限定在800MHz。(由于系统负载太高,后台的ASUS检测工具已经失去响应,无法实时刷新CPU频率)&■搭配Intel原装散热器搭配原装风扇时的热量分布图  Core i5-4670K使用原装散热器,开机后待机5分钟测得CPU空载温度为32℃。进行烤机测试后5分钟内温度上升到87℃,然后稳定在88℃左右顺利完成烤机测试。测试期间i5-4670K四核心满载频率在3.4-3.6GHz之间变动,也就是说这个原装散热器能勉强压制i5-4670K默频满载产生的热量(i5-4670K标准四核心满载频率为3.6GHz);观察满载时机器内热量分布图,CPU附近的最高温度为54.6℃。&■无风扇极限状态无风扇被动散热时的热量分布图  接下来让i5-4670K平台空载待机5分钟,使CPU温度下降到正常状态后关机,拆除CPU风扇供电后重启重复烤机步骤。开机5分钟后测得的待机温度为59℃,烤机开始后CPU温度迅速上升到88℃并自动降频,5分钟后i5-4670K四核心满载频率只有800-1100MHz,系统非常卡;20分钟左右i5-4670K有两个核心崩溃,热成像仪测得机箱内CPU附近最高温度为67.5℃。&■搭配塔式散热器搭配塔式散热器时的热量分布图  换成150元的塔式散热器,开机5分钟测得待机温度为30℃。运行Prime95烤机5分钟后温度上升到65℃,然后稳定在66℃顺利完成30分钟烤机,i5-4670K全程四核心稳定工作在3.6GHz。热成像仪录得CPU附近最高温度为56.4℃,和使用原装散热器的情况差不多。&■为了便于对比,我们将上面的稳定性测试的情况汇总成以下图表:测试情况汇总  由此可见,Intel Core i5-4670K平台当CPU温度高于88℃会影响稳定性&&这时候为了控制温度CPU会自动降频,但仍然无法运行高负载应用,无风扇平台最终两个CPU核心崩溃就是很好的例子。正常情况下,改用塔式散热可以明显降低CPU满载温度,但Core i5平台在默认频率下使用原装散热器已经足够稳定了。&1-2、不同温度对CPU性能的影响  既然知道当温度超过一定限额时CPU会自动降频防止温度过高,那么这个降频幅度对CPU性能影响有多大?下面同样是三个不同的散热平台,先待机等CPU回落到正常温度后,运行wPrime四线程满载运算1024M圆周率,记录最后所得的成绩以及CPU温度。测试截图(图为无风扇状态下性能测试,i5-4670K频率下降到800MHz)测试结果散热器原装散热无风扇塔式散热最高温64℃88℃51℃成绩(越小越好)323秒1039秒325秒  测试小结:只要温度没有超过88℃临界值,CPU不会自动降频,温度对性能基本无影响(参见塔式散热与原装散热)。但是当温度过高时CPU为了控制温度会自动降频,例如本次测试中极限无风扇状态下CPU运算效率还达不到正常状态下的1/3。换句话说,全新状态下的Intel原装散热器刚好能满足CPU散热需求,但长时间使用的话还是要记得定时&清尘&4AMD平台实测:温度升至95度直接断电2、AMD平台2-1、不同温度对CPU稳定性的影响测试截图(图为无风扇极限烤机,CPU频率限定在1.4GHz)  AMD平台的频率调节机制与Intel不同,在测试原装风扇散热的时候我们发现A10-5800K烤机时的CPU频率在2.4 - 4.0GHz之间跳跃。如果是无风扇状态,超过67℃时A10-5800K的频率开始下降;持续烤机,温度上升到80℃时A10-5800K的频率限定在1.4GHz,但温度会继续上升,在95℃左右出现高温保护自动断电,这在后面会有详细说明。&■搭配AMD原装散热器搭配原装散热器时的热量分布图  A10-5800K搭配原装散热器,在开机5分钟后测得CPU温度为32℃,烤机5分钟后达到稳定温度,维持在67℃完成30分钟的烤机测试。在这个过程中A10-5800K的CPU频率在2.4-4.0GHz之间跳跃。观察热量分布图,搭配原装散热器的时候A10-5800K附近的最高温主要集中在供电电路上。&■无风扇极限状态无风扇被动散热时的热量分布  在极限的被动散热情况下,A10-5800K平台开机5分钟后测得的温度为49℃。开启Prime95拷机测试后A10-5800K的温度迅速上升,一分钟后74℃,两分钟后81℃,此时A10-5800K的频率已经锁定在1.4GHz,但温度会继续上涨并突破90℃,4分钟左右A10-5800K出现过热保护自动断电,此时测得的最高温度为95℃。从热量分布图可以看到CPU周围已经堆积了大量的热。&■搭配塔式散热器搭配塔式散热器时的热量分布图  将散热器更换成百元级的塔式风冷,开机5分钟后测得待机温度28℃,烤机开始后逐渐升温,最后稳定在53℃完成烤机测试,CPU频率在3.4-4.0GHz之间跳跃。观察热量分布图,可见CPU附近的温度不高,和搭配原装散热的情况类似,最高温度主要出现在主板供电部分。&■稳定性测试情况汇总:测试情况汇总  在无风扇极限测试里AMD平台虽然也会通过降低频率来维持稳定性,但还是阻止不了温度的攀升,在4分钟的时候温度达到95℃,电脑出现高温保护自动断电,需要放置一段时间让CPU回归正常温度后才能开机使用;而使用原装散热和塔式散热对平台稳定性没有影响,两者均能通过30分钟Prime95烤机测试。  AMD平台的频率调节机制与Intel不同,即便使用塔式散热器,CPU频率也不会稳定在最高4.0GHz,而是在3.4-4.0GHz之间跳跃;原装散热的情况也类似,CPU频率大多数时间里维持在4.0GHz,偶尔跳跃变成2.4GHz,这种&跳跃性&的频率变化会不会对性能造成影响?我们接下来继续测试。&2-2、不同温度对CPU性能的影响测试截图(图为原装风扇状态下性能测试)测试结果散热器原装散热无风扇塔式散热最高温65℃91℃46℃成绩(越小越好)566秒&&559秒  测试小结:和前面Intel平台的测试结论一样,改用塔式散热后CPU温度有了明显下降,但对性能影响不大;但AMD平台的温度控制策略没有Intel灵活,无风扇极限测试下尽管CPU频率下降了,却无法抑制住CPU产生的热量,最终触发高温保护,无法完成性能测试。5结论3、总结:&■在CPU允许范围内,温度不会影响CPU性能和稳定性AMD/Intel原装散热器都刚好能应付CPU散热  AMD与Intel原装散热器作为低端风冷散热的代表,它们都&刚好&能压制住对应CPU的发热量,这一点相信两大CPU厂商在新品上市之前都会做相关测试,不然就闹笑话了。所以只要主机环境不是太恶劣,温度没有突破厂家设定的临界值(例如本次测试中Intel平台的88℃与AMD平台的67℃),更换强力散热器追求低温没有太大意义。&■当温度超过临界值,性能和稳定性都将受到影响温度过高会触发CPU自动降频,影响性能  在一些比较特殊的场合,例如通风不良或者容易堆尘的环境,CPU产生的热量无法被及时散发,就很有可能让CPU温度突破临界值。这时候CPU会通过自动降压降频来抑制热量的产生,性能/稳定性也将受到影响。&■如何判断处理器温度是否&越线&利用Prime95烤机来验证CPU散热情况  不同工艺、不同架构的CPU都有不同的适宜工作温度,如何判断CPU温度是否已经达到临界值呢?最简单的方法,像本次测试一样运行Prime95烤机软件,观察CPU-Z里的频率变化,如果出现自动降频就代表着散热不良,需要改善散热风道或者升级散热器。&■电脑不是一锤子买卖,盛夏酷暑更需要保养定期清理散热器才能保证散热效果&  每年到了盛夏天气,笔者总会时不时收到朋友们的求助信息&&电脑变卡、运行缓慢、自动重启等问题。很多时候这就是散热不良引起的,除了让机箱保持风道畅通,最好也记得定期帮电脑清清灰尘,换换硅脂,让CPU也能&清凉一夏&。
DIY硬件图赏
DIY论坛帖子排行
最新资讯离线随时看
聊天吐槽赢奖品

我要回帖

更多关于 怎么看主板cpu功率 的文章

 

随机推荐