小辣椒手机7多少钱x7怎么截屏步骤

2016第三届物联网大会
智能后视镜产品方案对接会
中国LED智能照明高峰论坛
第三届·无线通信技术研讨会
第二届·中国IoT大会
ETFo智能安防技术论坛
移入鼠标可放大二维码
谈谈变频器的原理及应用中出现的问题
来源:电子发烧友网整理 作者:Jazz日 15:22
[导读] 变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
变频器的工作原理
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类
:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的&整流器&,吸收在变流器和逆变器产生的电压脉动的&平波回路
大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。
控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的&运算电路&,主电路的&电压、电流检测电路&,电动机的&速度检测电路&,将运算电路的控制信号进行放大的&驱动电路&,以及逆变器和电动机的&保护电路&组成。
1、运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
2、电压、电流检测电路:与主回路电位隔离检测电压、电流等。
3、驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。
4、速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
5、保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏
变频器应用时的九大问题
1、信号线及控制线应选用屏蔽线,这样对防止干扰有利。当线路较长时,例如距离跃100m,导线截面应放大些。信号线及控制线不要与动力线放置在同一电缆沟或桥架中,以免相互干扰,最好穿管放置,这样更合适。
2、传输信号以选用电流信号为主,因电流信号不容易衰减,亦不容易受干扰。实际应用中传感器输出的信号是电压信号,可以通过变换器将电压信号变换成电流信号。
3、变频器闭环控制一般都是正作用的,即输入信号大,输出量亦大(例如中央空调制冷工作时及一般压力、流量、温度等控制时)。但亦有反作用的,即输入信号大,输出量反小(例如中央空调在制热工作时以及供热站的取暖热水泵)。闭环控制如图1所示。
4、在闭环控制时能选用压力信号的,就不要选用流量信号。这是因为压力信号传感器价格低,安装容易,工作量小,调试方便。但工艺过程有流量配比要求的,且要求精确时,那就必须选用流量控制器,并根据实际的压力、流量、温度、介质、速度等来选用合适的流量计(例如电磁式、靶式、涡街式、孔板式等)。
5、变频器内置的PLC、PID功能适合用于信号变动量较小、较稳定的系统。但由于内置的PLC、PID功能在工作时只调时间常数,所以难以得到较为满意的过度过程要求,而且调试比较费时。
另外这种调节不是智能的,故一般不经常采用,而是选用外置的智能化的PID调节器。例如日本富士PXD系列、厦门安东等,十分方便。使用时只要设置SV(上限值),工作时有PV(运行值)指示,又是智能化,保证具有最佳的过渡过程条件,使用较为理想。关于PLC,可按控制量的性质、点数、数字量、模拟量、信号处理等要求,选用外置PLC的各种品牌,例如西门子的S7-400、S7-300、S7-200等。
6、信号变换器在变频器外围电路中亦被经常用到,一般由霍尔元件加电子线路组成。按信号变换和处理方式可分为电压变电流、电流变电压、直流变交流、交流变直流、电压变频率、电流变频率、一进多出、多进一出、信号叠加、信号分路等各种变换器。例如深圳的圣斯尔CE-T系列电量隔离传感器/变送器,应用十分方便。国内类似产品不少,用户可按需要自行选择应用。
7、变频器在应用时往往要配外围电路,其方式常有:
(1)由自制继电器等控制元件组成的逻辑功能电路;
(2)买现成的单元外置电路(例如日本三菱公司的);
(3)选用简易可编程控制器LOGO(国外、国内都有此产品);
(4)使用变频器不同功能时,可选用功能卡(例如日本三垦变频器);
(5)选用中小型可编程序控制器。
8、多台水泵并联恒压供水(例如城市自来水厂的清水泵、中大型水泵站、供热水中心站等)的变频技术改造方案常见的有以下两种。
按使用经验,方案(1)节省初投资,但节能效果差。起动时先起动变频器至50Hz后,再起动工频,后转入节能控制。供水系统中只有采用变频器拖动的水泵,压力略小些,系统存在湍流现象,有损耗。
方案(2)投资较大,但比方案(1)多节能20%,猿台泵压力一致,无湍流损耗,效果更佳。
9、多台水泵并联恒压供水时采用信号串联方式只用一个传感器,其优点如下。
(1)节省成本。只要一套传感器及PID,如图4所示。
(2)因只有一个控制信号,所以输出频率一致,即同频率,这样压力亦一致,不存在湍流损耗。
(3)恒压供水时,当流量变化,泵的开动台数通过PLC控制随之变化。最少时1台,中等量时2台,较大量时3台。当变频器不工作停机时,电路(电流)信号是通路的(有信号流入,无输出电压、频率)。
(4)更有利的是,因为系统只有一个控制信号,即使3台泵投入不同,但工作频率却相同(即同步),压力亦一致,这样湍流损耗为零,亦即损耗最小,所以节电效果最佳。
逆变器相关文章
逆变器相关下载
变频器相关文章
变频器相关下载
整流器相关文章
整流器相关下载
英特尔公司高级副总裁兼无人驾驶事业部总经理戴佟森坚信英特尔会在无人驾驶领域取得成功。原因有三个:英特尔技术已经应用于正在进行路测的数百辆...
狗尾草科技有限公司COO严汉明认为,智能家居之前火不起来,有几个原因:智能家居成本太高,消费者对其的认知度还不够,交互感不够好。今年具备AI的...
创新实用技术专题
版权所有 & 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-谐波在变频器使用中的危害分析-筑龙博客
筑龙电气网收录各类电气资料50000余份,其中电气图纸10000余份,施工组织设计、方案3000多份...
这家伙什么标签都没有呢。
谐波在变频器使用中的危害分析
&&&&& 变频器选型时,电气网友经常会遇到这样一些技术要求,如技术要求中明确要求所选变频器产生的电压谐波和电流谐波必须要符合中国国家公用电网谐波标准和国际IEEE519等标准要求,具体数值是总的电压谐波畸变率和总的电流谐波率要低于5%,针对这个要求,哪些变频器能符合这些标准要求呢?这个问题可能不仅会困惑很多销售,同时也可能让很多电气工程师很纠结,所以在本次论坛上我们欢迎各位网友能够积极探讨,加上理论分析和实测谐波大小,能够让各位网友明确以下基本概念,正确选择变频器,降低变频器对电网的干扰。什么是谐波 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证实,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为100Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,变频器主要产生5、7次谐波。谐波电流计算方法& & 计算步骤& & & 步骤1:根据国家标准和实际变压器的短路容量计算所允许的各次谐波电流,具体公式为& & Ih=IGB(Sr/Sj)& & 式中:Ih为各次谐波电流允许限值;IGB为基准短路容量下各次谐波电流限值;Sr为实际短路容量,MVA;Sj为基准短路容量,380V时取10MVA。& & 同一公共连接点的每个用户向电网注入的谐波电流允许值按此用户在该点的协议容量或最大负荷容量与其供电设备容量之比进行分配。如果简单地用谐波电流算术和的方法,得到的结果往往过于保守,会造成资源的浪费。推荐使用伪平方求和的方法,即有& & Ihi=Ih(Si/St)1/a& & 式中:Si为用户的用电协议容量或最大负荷容量,MVA;St为供电设备容量,MVA;Ihi为折算后的各次谐波电流允许值;a为相位叠加系数,各次谐波的相位叠加系数可按相关表格查得。& & &步骤2:额定电流折算 & & I’e=Ie×(0.38标准电压)& 式中:I’e为折算后的额定电流;Ie为变频器的额定电流。& & 步骤3:根据谐波电流含量表以及变频器的电路形式来确定各次谐波电流的大小,并和步骤1的结果相比较,判断是否符合国标。计算公式如下:& & Ih=I’e×谐波含量(%)×负载率& & 如果不符合国标,则应采用其他的对策,如使用电抗器、添加谐波补偿设备等。谐波的限制标准& & 关于谐波的常用标准是GB-T14549和IEEE519以及GB-T17625。& & GB-T14549是中国国内标准,是针对电网提出的谐波限制要求。电力公司使用这个标准来保证公共电网的质量满足要求。IEEE519是对应于GB-T14549的国际标准,作为“电力系统中的谐波控制推荐实施和要求”,这个标准的目的是为处理静止功率补偿器和其他非线性负载产生的谐波提供指南,从而避免电网质量问题。最近随着变频器和其他非线性负载增加,电力公司开始推行这个标准。如不采取谐波处理措施,大部分变频器不能满IEEE519要求。 & & & & & & & GB-T17625是针对接入电网的设备提出的谐波限制要求,当接入电网的设备满足这个标准时,就不会对电网造成危害。因此,设备制造商有义务使所制造的设备满足这个标准的要求,电力公司有权利限制不满足GB-T17625的设备接入电网。& &另一方面,设备的采购方有权利要求所采购的设备满足GB-T17625,否则,企业会承受巨大的经济损失。企业承受的经济损失来自两个方面。第一,设备在运行时,会对用户的内部电网产生危害,造成制造系统的故障,降低产量,增加废品率;第二,设备运行后,企业不能满足GB-T14549的要求,需要对电力公司承担责任,接受处罚。& & 综上所述,GB14549体现了电力公司与电力用户之间的责任关系。GB17625体现了设备制造商与设备用户之间责任关系。一、在变频器输入侧的对策& 1、变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。& & 2、设置交流电抗器。在电源与变频器输入侧之间串联交流电抗器,这样可使整流阻抗增大来有效抑制高次谐波电流,提高输入电源的功率因数,使进线电流的波形畸变大约降低30%~50%,是不加电抗器谐波电流的一半左右。& & 3、设置交流滤波器。滤波器串联在变频器输入侧,由电感线圈组成,通过增大电路的阻抗减小频率较高的谐波电流。目前谐波抑制的一个重要趋势是采用有源电力滤波器。它串联或是并联于主电路中,实时从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等、方向相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,其特性不受系统的影响,无谐波放大的危险,因而备受关注。& 二、采用多相脉冲整流& 在条件允许或是要求谐波限制在比较小的情况下,可采用多相整流的方法。12相脉冲整流THDV大约为10%~15%,18相脉冲整流的THDV约为3%~8%,满足国际标准的要求。缺点是需要专用变压器,不利于设备的改造,价格较高。&三、屏蔽干扰源& 屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。对于变频器,主回路端子PE的正确接地是减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。变频器接地导线的截面积一般应不小于2.5mm,长度控制在20m以内。建议变频器的接地与其他动力设备接地点分开,不能共地。四、变频器谐波的治理可采用以下方法: (1)变频器的隔离、屏蔽、接地:变频器系统的供电电源与其它设备的供电电源相互独立。或在变频器和其它用电设备的输入侧安装隔离变压器。或者将变频器放入铁箱内,铁箱外壳接地。同时变频器输出电源应尽量远离控制电缆敷设(不小于50mm间距),必须靠近敷设时尽量以正交角度跨越,必须平行敷设时尽量缩短平行段长度(不超过1mm),输出电缆应穿钢管并将钢管作电气连通并可靠接地。作(2)加装交流电抗器和直流电抗器:当变频器使用在配电变压器容量大于500KVA,且变压器容量大于变频器容量的10倍以上,则在变频器输入侧加装交流电抗器。而当配电变压器输出电压三相不平衡,且不平衡率大于3%时,变频器输入电流峰值很大,会造成导线过热,则此时需加装交流电抗器。严重时则需加装直流电抗器。)(3)加装无源滤波器:将无源滤波器安装在变频器的交流侧,无源滤波器由L、C、R元件构成谐波共振回路,当LC回路的谐波频率和某一次高次谐波电流频率相同时,即可阻止高次谐波流入电网。无源滤波器特点是投资少、频率高、结构简单、运行可靠及维护方便。无源滤波器缺点是滤波易受系统参数的影响,对某些次谐波有放大的可能、耗费多、体积大。直(4)加装有源滤波器:早在70年代初,日本学者就提出有源滤波器的概念,由源滤波器通过对电流中高次谐波进行检测,根据检测结果输入与高次谐波成分具有相反相位电流,达到实时补偿谐波电流的目的。与无源滤波器相比具有高度可控性和快速响应性,有一机多能特点。且可消除与系统阻抗发生谐振危险。也可自动跟踪补偿变化的谐波。但存在容量大,价格高等特点。公(5)加装无功功率静止型无功补偿装置:对于大型冲击性负荷,可装设无功功率的静止型无功补偿装置,以获得补偿负荷快速变动的无功需求,改善功率因数,滤除系统谐波,减少向系统注入谐波电流,稳定母线电压,降低三相电压不平衡度,提高供电系统承受谐波能力。而其中以自饱和电抗型(SR型)的效果最好,其电子元件少,可靠性高,反应速度快,维护方便经济,且我国一般变压器厂均能制造。元(6)线路分开:因电源系统内有阻抗,所以谐波负荷电流将造成电压波形的谐波电压畸形。把产生谐波的负荷的供电线路和对谐波敏感的负荷供电线路分开,线性负荷和非线性负荷从同一电源接口点PCC开始由不同的电路馈电,使非线性负荷产生的畸变电压不会传导到线性负荷上去。&(7)电路的多重化、多元化:逆变单元的并联多元化是采用2个或多个逆变单元并联,通过波形移位叠加,抵消谐波分量;整流电路的多重化是采用12脉波、18脉波、24脉波整流,可降低谐波成分;功率单元的串联多重化是采用多脉波(如30脉波的串联),功率单元多重化线路也可降低谐波成分。此外还有新的变频调制方法,如电压矢量的变形调制。,(8)变频器的控制方式的完善:随着电力电子技术、微电子技术、计算机网络等高新技术发展,变频器控制方式有了以下发展:数字控制变频器,变频器数字化采用单片机MCS51或80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能;多种控制方式结合,单一的控制方式有着各自的缺点,如果将这些单一控制方式结合起来,可以取长补短,从而达到降低谐波提高效率的功效。(9)使用理想化的无谐波污染的绿色变频器:绿色变频器的品质标准是:输入和输出电流都是正弦波,输入功率因数可控,带任何负载使都能使功率因数为1,可获得工频上下任意可控的输出功率。五、变频器电抗器的选择问题1, 额定交流电流的选择 额定交流电流是从发热方面设计电抗器的长期工作电流,同时应该考虑足够的高次谐波分量。即输出电抗器实际流过的电流是变频器电机负载的输出电流。 2, 电压降 电压降是指50HZ时,对应实际额定电流时电抗器线圈两端的实际电压降。通常选择电压降在4V~8V左右。 3, 电感量的选择 电抗器的额定电感量也是一个重要的参数!若电感量选择不合适,会直接影响额定电流下的电压降的变化,从而引起故障。而电感量的大小取决于电抗器铁芯的截面积和线圈的匝数与气隙的调整。 输出电抗器电感量的选择是根据在额定频率范围内的电缆长度来确定,然后再根据电动机的实际额定电流来选择相应电感量要求下的铁芯截面积和导线截面积,才能确定实际电压降。 4,对应额定电流的电感量与电缆长度: 电缆长度 额定输出电流 电感量 300米 100A 46μH 200A 23μH 250A 16μH 300A 13μH 600米 100A 92μH 200A 46μH 250A 34μH 300A 27μH 理想的电抗器在额定交流电流及以下,电感量应保持不变,随着电流的增大,而电感量逐渐减小。 当额定电流大于2倍时,电感量减小到额定电感量的0.6倍。 当额定电流大于2.5倍时,电感量减小到额定电感量的0.5倍。当额定电流大于4倍时,电感量减小到额定电感量的0.35倍。六、降低变频器谐波可以采用以下方法:& 1)变频器的隔离、屏蔽、接地:变频器系统的供电电源与其它设备的供电电源相互独立。 或在变频器和其它用电设备的输入侧安装隔离变压器。或者将变频器放入铁箱内,铁箱外壳接地。同时变频器输出电源应尽量远离控制电缆敷设(不小于50mm间距),必须靠近敷设时尽量以正交角度跨越,必须平行敷设时尽量缩短平行段长度(不超过1 mm ),输出电缆应穿钢管并将钢管作电气连通并可靠接地。& 2)加装交流电抗器和直流电抗器:当变频器使用在配电变压器容量大于500KVA ,且变压器容量大于变频器容量的10倍以上,则在变频器输入侧加装交流电抗器。而当配电变压器输出电压三相不平衡,且不平衡率大于3% 时,变频器输入电流峰值很大,会造成导线过热,则此时需加装交流电抗器。严重时则需加装直流电抗器。& 3)加装无源滤波器:将无源滤波器安装在变频器的交流侧,无源滤波器由 L、C、R元件构成谐波共振回路,当 LC 回路的谐波频率和某一次高次谐波电流频率相同时,即可阻止高次谐波流入电网。无源滤波器特点是投资少、频率高、结构简单、运行可靠及维护方便。无源滤波器缺点是滤波易受系统参数的影响,对某些次谐波有放大的可能、耗费多、体积大。& 4)加装有源滤波器:早在70年代初,日本学者就提出有源滤波器的概念,由源滤波器通过对电流中高次谐波进行检测,根据检测结果输入与高次谐波成分具有相反相位电流,达到实时补偿谐波电流的目的。与无源滤波器相比具有高度可控性和快速响应性,有一机多能特点。且可消除与系统阻抗发生谐振危险。也可自动跟踪补偿变化的谐波。但存在容量大,价格高等特点。& 5)加装无功功率静止型无功补偿装置:对于大型冲击性负荷,可装设无功功率的静止型无功补偿装置,以或得补偿负荷快速变动的无功需求,改善功率因数,滤除系统谐波,减少向系统注入谐波电流,稳定母线电压,降低三相电压不平衡度,提高供电系统承受谐波能力。而其中以自饱和电抗型( SR型 ) 的效果最好,其电子元件少,可靠性高,反应速度快,维护方便经济,且我国一般变压器厂均能制造。& 6)线路分开:谐波产生的根本原因是由于使用了非线性负载,因此,解决的根本办法是把产生谐波的负载的供电线路和对谐波敏感的负载的供电线路分开。由于非线性负载引起的畸变电流在电缆的阻抗上产生一个畸变电压降,而合成的畸变电压波形加到与此同一线路上所接的其它负载,引起谐波电流在其上流过。因此,减少谐波危害的措施也可从加大电缆截面积,减少回路的阻抗方式来实现。可以将线性负载与非线性负载从同一电源接口点(PCC)就开始分别的电路供电,这样可以使由非线性负载产生的畸变电压不会传导到线性负载上去。这是目前治理谐波问题较为理想的解决方案。& 7)电路的多重化、多元化:逆变单元的并联多元化是采用2个或多个逆变单元并联,通过波形移位叠加,抵消谐波分量;整流电路的多重化是采用12脉波、18脉波、24脉波整流,可降低谐波成分;功率单元的串联多重化是采用多脉波(如30脉波的串联),功率单元多重化线路也可降低谐波成分。此外还有新的变频调制方法,如电压矢量的变形调制。& 8)变频器的控制方式的完善:随着电力电子技术、微电子技术、计算机网络等高新技术发展,变频器控制方式有了以下发展:数字控制变频器,变频器数字化采用单片机MCS51或80C196MC等,辅助以 SLE4520或EPLD液晶显示器等来实现更加完善的控制性能;多种控制方式结合,单一的控制方式有着各自的缺点,如果将这些单一控制方式结合起来,可以取长补短,从而达到降低谐波提高效率的功效。& 9)使用理想化的无谐波污染的绿色变频器:绿色变频器的品质标准是:输入和输出电流都是正弦波,输入功率因数可控,带任何负载使都能使功率因数为1,可获得工频上下任意可控的输出功率。变频器内置的交流电抗器,它能很好的抑制谐波,同时可以保护整流桥不受电源电压瞬间尖波的影响,实践表明,不带电抗器的谐波电流明显高于带电抗器产生的谐波电流。为了减少谐波污染造成的干扰,在变频器的输出回路安装噪声滤波器。并且在变频器答应的情况,降低变频器的载波频率。另外,在大功率变频器中,通常使用12脉冲或18脉冲整流,这样在电源中,通过消除最低次谐波来减少谐波含量。& & 综上所述,可以了解变频器以及变频器谐波产生的机理,变频器谐波以及其危害性,以及采用变频器隔离、接地或采用无源滤波器、有源滤波器、加设无功补偿装置以及绿色变频器等方法。随着电力电子技术以及微电子技术等技术的飞速发展,在治理谐波问题上将会迈上一个新的台阶,将变频器产生的谐波控制在最小范围之内以达到抑制电网污染,提高电能质量。
筑龙电气网的最新博文
分享到微信朋友圈
打开微信"扫一扫",扫描上方二维码请点击右上角按钮&,选择&
同时发布一条微博
谁看过这篇博文
谁收集过这篇博文
$(".zhul_sy_rightBox").popupbox({geturl:ucenterDomain+"openjson/getpopupbox",format:"bigright",cssClass:"zhul_info_rightbox",waithtml:' '});
$().zlidol({geturl:weiboDomain+"userinfo/jsonidol?action=idol"})
})(jQuery);君,已阅读到文档的结尾了呢~~
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
变频器中单片机控制的设计分析
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口关于提高变频器调频速度的研究
> 关于提高变频器调频速度的研究
关于提高变频器调频速度的研究
  目前,已经大量应用在需要调整工况和节能的生产环节中,为方便地调整电机工况和节约电能,起了很大的作用。在能源日益紧缺,不得不提出建立节能型社会的今天和明天,将会得到更加广泛的应用。本文引用地址:
  如果用户在对变频器的使用时需要比较快速、比较频繁地调整频率,传统的变频器就很难满足其需要,特别是在惯性大的负载上使用变频器时,必须将升、降频(特别是降频)速度设置的比较慢,以适应由于惯性造成的电机转速的滞后。因为电机及其负载由于惯性的原因,其转速与变频器输出的频率的同步需要一段时间,特别是用于惯性大的负载时,这个时间就比较长。如果频率调整的速度远远快于电机转速,电机将处于四象限运行的发电状态,业内同仁都知道,这个发电状态对于变频器是很危险的。传统变频器对于这个问题的解决办法是设置泄放保护电路,但即便是在变频器上设置了泄放保护电路,也仅仅是保护了变频器不会因此而发生故障,并没有真正解决电机及其负载的惯性问题,这是因为传统的变频器只是输出电能的频率和电压的调整装置,对于电机的惯性并没有制约。正是由于传统的变频器没有设置对电机惯性的制约功能,就使其在某些有特殊需要的场合不能方便、安全和可靠的使用,事实上也限制了变频器的应用范围。
  用机械的方法显然不能对被控电机实施有效地同步制动;而采用传统的电制动手段虽然可以在操作上与变频器的调频同时进行,但是由于传统的电制动大都是以刹车为目的的,要想将被控电机的转速与调频过程同步也是非常困难的。这就是使用变频器调整被控异步电机转速,不如直流电机的调速效果那么好的主要原因。
  本文作者以独特的思维方式找到了一种能够较好地控制被控电机的转速,使其能够与变频器输出电能的频率尽快同步的电制动方法,用这个制动方法协助变频器调整被控电机转速,可以最大限度的适应电机及其负载的惯性,使电机的转速在尽量短的时间内与变频器输出电能的频率同步,不仅对变频器起到了保护的作用,还使变频器能够适应必较快速、比较频繁地调整频率和惯性大的负载的使用,进一步拓展了高、低压变频器的应用范围。如果将这个制动方法中的电机转速制动装置单独使用,还可以作为电机的软起动器和在需要频繁调整频率、需要精确制动甚至有反向运行要求的领域作为电机的调速装置。用这个电机转速制动装置作为电机的调速装置使用时,其调速效果可以与直流电机的调速效果相媲美。
  1、提高变频器调频速度动态响应的原理
  本项目的研究是为了克服上述传统变频器目前存在的缺陷,在传统变频器上增加比较简单并业已成熟的换相技术,为变频器的制造提供了一种新的附加技术。
  本项研究根据的是三相交流电可以组成多种相序,并且其相位互有差距的原理。三相交流电可以组成多种相序,其相位互有差距的原理为:三相交流电分别为A相、B相、C相。三相交流电按不同顺序排列,产生三种正序排列:A、B、C;C、A、B;B、C、A和三种逆序排列:A、C、B;B、A、C;C、B、A。其中正序的三种排列电机的旋转方向相同,在相位上互有差距,对于对称的三相交流电来说,这三种正序的排列在相位上互差120&;逆序的三种排列同正序的三种排列一样,电机的旋转方向相同(只是与正序的三种排列时电机的旋转方向相反而已),在相位上互差120&。
  如果把被控三相异步电机定子的三根进线的顺序固定,并使它们按一定的规律和周期顺序的在三种正序排列方式(或在正序与逆序的排列)中切换,由于三种正序排列在相位上互差120&,每次切换后就使定子旋转磁场滞后120&(在正序与逆序的排列中切换,则是反向)),此时就会形成转子磁场拉定子磁场的发电制动状态,即回馈制动状态,如果使它们按一定的频率进行这种切换,电机将工作在电动与回馈制动交替的状态:在电动状态时,转差率S&0,在回馈制动状态时,转差率 S&0。回馈制动状态实际上就是&刹车&,这样一来就造成了转子在转动的过程中经常被&刹车&,转速自然也就随之慢下来了,切换相序的频率越高,在单位时间内定子旋转磁场滞后(&刹车&)的次数就越多,于是转子的转速就越低;反之,切换相序的频率越低,在单位时间内定子旋转磁场滞后(&刹车&)的次数就越少,于是转子的转速就越高,当切换相序的频率为&0&,即不进行切换时,转子的转速最高,为该电机的额定转速。当然如果把三相异步电机定子的三根进线的顺序固定,并使它们按一定的规律和周期顺序的在三种逆序排列方式中切换,也同样能够使定子旋转磁场产生的滞后,从而使转子的转速发生变化,只是转子旋转的方向相反而已。
  用电机转速制动装置可快速调整变频器对电机转速的控制的具体工作原理是:在传统的变频器上安装切换同步电路(包括目标频率检索电路和指令选择电路)、切换控制器(包括指令存储器和指令发出电路)、切换控制电路和切换开关。当变频器不进行频率调整或调频结束(即运行当前频率已经达到目标频率)时,指令选择电路得不到目标频率检索电路的指令(或得到不进行相序切换的指令),指令发出电路不发出切换指令,通过切换控制电路输出的驱动信号使电动机根据此时变频器输出的电能的频率正常匀速运行。当变频器发出频率调整指令(即目标频率与当前运行频率不同)时,目标频率检索电路检索到新的目标频率指令(如配置了当前运行频率与目标频率的差距的检索功能,还将检索到当前频率与新的目标频率的差距),立即向指令选择电路发出相应的选择指令,指令选择电路在指令存储器中选出相应的切换指令,并通过指令发出电路向切换控制电路发出相应的相序切换频率的指令,在整个频率调整过程中(即当前运行频率没有达到目标频率之前),相序切换一直按一定的频率进行,直到频率调整过程结束(即当前运行频率与目标频率一致)时,相序切换停止。这样,在相序切换功能的协助下,通过定子旋转磁场相位变化对电机转子实施制动,使电机的转速能够较快的与变频器输出的电能的频率相吻合,实现了快速调整电机转速的目的。在这里必须指出的是:本文所举的例子是把变频器在频率调整过程中的当前运行频率和目标频率当作信息源的,在制造和现场调试时,还最好配以在频率调整过程中电机转速的检测,以便尽量准确的确定相序切换频率与频率调整过程的对应关系;当然,如果设计时增加对电机的转速进行矢量检测,并以此作为辅助信息源参与相序切换频率与频率调整,效果会更好,只是会增加一定的制造成本。
  如果将所述的电机转速制动装置单独使用,即将其中的指令选择电路、切换控制器(包括指令存储器和指令发出电路)、切换控制电路、切换开关等配置上操作器及界面制造成独立的控制装置,并在指令存储器中预存相应的指令,就可以作为电机的软起动器,还可以作为在调整频率频繁、需要精确制动和有反向运行要求的场合使用的电机调速装置。
  但是由于目前还没有能够承受高电压(6kV、10kV)可以直接单独在高压环境使用的半导体开关器件,所以在用相序切换的功能协助高压电机调速时,必须采用如下的方法:
  (1) 将多个半导体开关器件,在并联同步保护电路的协助下串联使用,使其达到能够承受高电压的能力,实现相序切换;
  (2) 在高压变频器的频率程序中增设相序切换功能,在波形发生环节实现相序切换,这样只需在原来的控制程序的基础上,增加相应的相序切换程序即可实现,无需硬件的增加和改造,这是比较安全可靠的方法;
  (3) 一旦有了能够承受高电压(6kV、10kV)可以直接单独在高压环境使用的半导体开关器件,就直接采用半导体开关器件实现相序切换。
  由于电机在制动时可能会产生能量,所以还应该设置能量吸收泄放电路,以对变频器在频率调整程序中实施保护。当然,如果设置了能量回馈电路将电机在制动时所产生的能量回馈到前级电路再加以利用就更好了,这样又进一步提高了节能的效果。
  2 结束语
  本文介绍的这项技术已经申请了专利,它只在传统变频器上增加比较简单并业已成熟的换相技术,就可克服传统变频器存在的缺陷,为变频器的制造提供了一种新的附加技术,同时也可扩大变频器的应用范围。
分享给小伙伴们:
我来说两句……
最新技术贴
微信公众号二
微信公众号一

我要回帖

更多关于 小辣椒x7内屏多少钱 的文章

 

随机推荐