电脑主板主板12v电压过高高,换过一个新主板。也换过一个新电源,但主板电压还是过高,请问这个是哪里出问题了?

&&我的电脑老是自动关机,是主板的问题还是电源的问题?
我的电脑老是自动关机,是主板的问题还是电源的问题?
计算机电源的功率不足或性能差。这种情况也比较常见,特别是当我们为自己主机增添了新的设备后,如更换了高档的显卡,增加了刻录机,添加了硬盘后,就很容易出现。当主机全速工作,比如运行大型的3D游戏,进行高速刻录或准备读取光盘,刚刚启动时,双硬盘对拷数据,就可能会因为瞬时电源功率不足而引起电源保护而停止输出,但由于当电源停止输出后,负载减轻,这时电源再次启动。因为保护后的恢复时间很短,所以给我们的表现就是主机自动重启。还有一种情况,是主机开关电源性能差,虽然电压是稳定的也在正常允许范围之内,但因为其输出电源中谐波含量过大,也会导致主机经常性的死机或重启。对于这种情况我们使用万用表测试其电压时是正常的,最好更换一台优良的电源进行替换排除。解决方法:现换高质量大功率计算机电源。4.主机开关电源的市电插头松动,接触不良,没有插紧这种情况,多数都会出现在DIY机器上,主机电源所配的电源线没有经过3C认证,与电源插座不配套。当我们晃动桌子或触摸主机时就会出现主机自动重启,一般还会伴有轻微的电打火的“啪啪”声。解决方法:更换优质的3C认证电源线。5.主板的电源ATX20插座有虚焊,接触不良这种故障不常见,但的确存在,主要是在主机正常工作时,左右移动ATX20针插头,看主机是否会自动重启。同时还要检查20针的电源插头内部的簧片是否有氧化现象,这也很容易导致接触电阻大,接触不良,引起主机死机或重启。有时还需要检查20针插头尾部的连接线,是否都牢靠。解决方法:① 如果是主板焊点虚焊,直接用电烙铁补焊就可以了。注意:在对主板、硬盘、显卡等计算机板卡焊接时,一定要将电烙铁良好接地,或者在焊接时拔下电源插头。② 如果是电源的问题,最好是更换一台好的电源。6.CPU问题 CPU内部部分功能电路损坏,二级缓存损坏时,计算机也能启动,甚至还会进入正常的桌面进行正常操作,但当进行某一特殊功能时就会重启或死机,如画表,播放VCD,玩游戏等。解决办法:试着在CMOS中屏蔽二级缓存(L2)或一级缓存(L1),看主机是否能够正常运行;再不就是直接用好的CPU进行替换排除。如果屏蔽后能够正常运行,还是可以凑合着使用,虽然速度慢些,但必竟省钱了。7.内存问题   内存条上如果某个芯片不完全损坏时,很有可能会通过自检(必竟多数都设置了POST),但是在运行时就会因为内存发热量大而导致功能失效而意外重启。多数时候内存损坏时开机会报警,但内存损坏后不报警,不加电的故障都还是有的。最好使用排除法,能够快速确定故障部位。8.光驱问题   如果光驱内部损坏时,也会导致主机启动缓慢或不能通过自检,也可能是在工作过程中突然重启。对于后一种情况如果是我们更换了光驱后出现的,很有可能是光驱的耗电量不同而引起的。大家需要了解的是,虽然光驱的ATPI接口相同,但不同生产厂家其引脚定义是不相同的,如果我们的硬盘线有问题时,就可能产生对某一牌子光驱使用没有问题,但对其他牌子光驱就无法工作的情况,这需要大家注意。9.RESET键质量有问题如果RESET开关损坏,内部簧片始终处于短接的位置时,主机就无法加电自检。但是当RESET开关弹性减弱或机箱上的按钮按下去不易弹起时,就会出现在使用过程中,因为偶尔的触碰机箱或者在正常使用状态下而主机突然重启。所以,当RESET开关不能按动自如时,我们一定要仔细检查,最好更换新的RESET按钮开关或对机箱的外部按钮进行加油润滑处理。还有一种情况,是因为机箱内的RESET开关引线在焊接时绝缘层剥离过多,再加上使用过程中多次拆箱就会造成RESET开关线距离过近而引起碰撞,导致主机自动重启。 10.接入网卡或并口、串口、USB接口接入外部设备时自动重启 这种情况一般是因为外设有故障,比如打印机的并口损坏,某一脚对地短路,USB设备损坏对地短路,网卡做工不标准等,当我们使用这些设备时,就会因为突然的电源短路而引起计算机重启。三、其他原因 1.散热不良或测温失灵   CPU散热不良,经常出现的问题就是CPU的散热器固定卡子脱落,CPU散热器与CPU接触之间有异物,CPU风扇长时间使用后散热器积尘太多,这些情况都会导致CPU散热不良,积聚温度过高而自动重启。还有就是CPU下面的测温探头损坏或P4 CPU内部的测温电路损坏,主板上的BIOS有BUG在某一特殊条件下测温不准,这些都会引起主机在工作过程中自动保护性重启。最后就是我们在CMOS中设置的CPU保护温度过低也会引起主机自动重启。2.风扇测速失灵 当CPU风扇的测速电路损坏或测速线间歇性断路时,因为主板检测不到风扇的转速就会误以为风扇停转而自动关机或重启,但我们检查时可能看到CPU风扇转动正常,并且测速也正常。 希望对你有帮助
提问者的感言:谢谢您的解答!
其他回答1条
计算机电源的功率不足或性能差。这种情况也比较常见,特别是当我们为自己主机增添了新的设备后,如更换了高档的显卡,增加了刻录机,添加了硬盘后,就很容易出现。当主机全速工作,比如运行大型的3D游戏,进行高速刻录或准备读取光盘,刚刚启动时,双硬盘对拷数据,就可能会因为瞬时电源功率不足而引起电源保护而停止输出,但由于当电源停止输出后,负载减轻,这时电源再次启动。因为保护后的恢复时间很短,所以给我们的表现就是主机自动重启。还有一种情况,是主机开关电源性能差,虽然电压是稳定的也在正常允许范围之内,但因为其输出电源中谐波含量过大,也会导致主机经常性的死机或重启。对于这种情况我们使用万用表测试其电压时是正常的,最好更换一台优良的电源进行替换排除。解决方法:现换高质量大功率计算机电源。4.主机开关电源的市电插头松动,接触不良,没有插紧这种情况,多数都会出现在DIY机器上,主机电源所配的电源线没有经过3C认证,与电源插座不配套。当我们晃动桌子或触摸主机时就会出现主机自动重启,一般还会伴有轻微的电打火的“啪啪”声。解决方法:更换优质的3C认证电源线。5.主板的电源ATX20插座有虚焊,接触不良这种故障不常见,但的确存在,主要是在主机正常工作时,左右移动ATX20针插头,看主机是否会自动重启。同时还要检查20针的电源插头内部的簧片是否有氧化现象,这也很容易导致接触电阻大,接触不良,引起主机死机或重启。有时还需要检查20针插头尾部的连接线,是否都牢靠。解决方法:① 如果是主板焊点虚焊,直接用电烙铁补焊就可以了。注意:在对主板、硬盘、显卡等计算机板卡焊接时,一定要将电烙铁良好接地,或者在焊接时拔下电源插头。② 如果是电源的问题,最好是更换一台好的电源。6.CPU问题 CPU内部部分功能电路损坏,二级缓存损坏时,计算机也能启动,甚至还会进入正常的桌面进行正常操作,但当进行某一特殊功能时就会重启或死机,如画表,播放VCD,玩游戏等。解决办法:试着在CMOS中屏蔽二级缓存(L2)或一级缓存(L1),看主机是否能够正常运行;再不就是直接用好的CPU进行替换排除。如果屏蔽后能够正常运行,还是可以凑合着使用,虽然速度慢些,但必竟省钱了。7.内存问题   内存条上如果某个芯片不完全损坏时,很有可能会通过自检(必竟多数都设置了POST),但是在运行时就会因为内存发热量大而导致功能失效而意外重启。多数时候内存损坏时开机会报警,但内存损坏后不报警,不加电的故障都还是有的。最好使用排除法,能够快速确定故障部位。8.光驱问题   如果光驱内部损坏时,也会导致主机启动缓慢或不能通过自检,也可能是在工作过程中突然重启。对于后一种情况如果是我们更换了光驱后出现的,很有可能是光驱的耗电量不同而引起的。大家需要了解的是,虽然光驱的ATPI接口相同,但不同生产厂家其引脚定义是不相同的,如果我们的硬盘线有问题时,就可能产生对某一牌子光驱使用没有问题,但对其他牌子光驱就无法工作的情况,这需要大家注意。9.RESET键质量有问题如果RESET开关损坏,内部簧片始终处于短接的位置时,主机就无法加电自检。但是当RESET开关弹性减弱或机箱上的按钮按下去不易弹起时,就会出现在使用过程中,因为偶尔的触碰机箱或者在正常使用状态下而主机突然重启。所以,当RESET开关不能按动自如时,我们一定要仔细检查,最好更换新的RESET按钮开关或对机箱的外部按钮进行加油润滑处理。还有一种情况,是因为机箱内的RESET开关引线在焊接时绝缘层剥离过多,再加上使用过程中多次拆箱就会造成RESET开关线距离过近而引起碰撞,导致主机自动重启。 10.接入网卡或并口、串口、USB接口接入外部设备时自动重启 这种情况一般是因为外设有故障,比如打印机的并口损坏,某一脚对地短路,USB设备损坏对地短路,网卡做工不标准等,当我们使用这些设备时,就会因为突然的电源短路而引起计算机重启。三、其他原因 1.散热不良或测温失灵   CPU散热不良,经常出现的问题就是CPU的散热器固定卡子脱落,CPU散热器与CPU接触之间有异物,CPU风扇长时间使用后散热器积尘太多,这些情况都会导致CPU散热不良,积聚温度过高而自动重启。还有就是CPU下面的测温探头损坏或P4 CPU内部的测温电路损坏,主板上的BIOS有BUG在某一特殊条件下测温不准,这些都会引起主机在工作过程中自动保护性重启。最后就是我们在CMOS中设置的CPU保护温度过低也会引起主机自动重启。2.风扇测速失灵 当CPU风扇的测速电路损坏或测速线间歇性断路时,因为主板检测不到风扇的转速就会误以为风扇停转而自动关机或重启,但我们检查时可能看到CPU风扇转动正常,并且测速也正常。 希望对你有帮助
问答为您推荐
市场价:暂无
网友正在问
||||||||||
Copyright (C) 1999-, All Rights Reserved 版权所有 天极网络+3.3V:  最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSⅡ电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等。从第二代奔腾芯片开始,由于CPU的运算速度越来越快,Intel公司为了降低能耗,把CPU的电压降到了3.3V以下。为了减少主板产生热量和节省能源,现在的电源直接提供3.3V电压,经主板的电压转换电路变换后用于驱动CPU、内存等电路。+5V:  目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路。包括磁盘、光盘驱动器的控制电路。+12V:  用于驱动磁盘驱动器马达、散热风扇,或通过主板的总线槽来驱动其他板卡。在最新的P4系统中,由于P4处理器对能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其他电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。-12V:  主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A。-5V:  在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A。在许多新系统中已经不再使用-5V电压,现在的某些形式电源一般不再提供-5V输出。+5V&Stand—By:  最早在ATX提出,在系统关闭后,保留一个+5V的等待电压,用于电源及系统的唤醒服务。以前的PSII、AT电源都是采用机械式开关来开机关机,从ATX开始(包括SFX)不再使用机械式开关来开机关机,而是通过键盘或按钮给主板一个开机关机信号,由主板通知电源关闭或打开。  由于+5V&Stand-by是一个单独的电源电路,只要有输入电压,+5VSB就存在,这样就使电脑能实现远程Modem唤醒或网络唤醒功能。最早的ATX1.0版只要求+5VSB达到0.1A,随着CPU及主板的功能提高,+5VSB&0.1A已不能满足系统的要求,所以Intel公司在ATX2.01版提出+5VSB不低于0.72A。随着互联网应用的不断深入,一些系统要求+5VSB提供2A、3A,甚至更大的电流输出,以保障系统功能的实现,因此对电源提出了更高的设计要求。  为了保证输出电压的稳定,ATX电源内部设计了一套补偿电路,能够根据输出电压下跌的幅度自动进行补偿来抵消输出电压的下降,不过绝大多数的ATX电源并没有为每一路输出电压提供单独的稳压电路,而是同时补偿,这样就容易出现一个特殊的现象,比如+3.3V、+5V和+12V中的+5V因为负载太大而导致输出电压开始下降,电源会同时增加这三路的输出电压,并不会单独对+5V进行控制,其结果必然导致+3.3V和+12V的输出电压过渡补偿而超过额定的电压,当电源设计欠佳或输出功率不足时这种特有的现象就更加明显!  实际使用中输出电压下降与上升的现象往往会同时出现,其中负载大的一路其输出电压往往小于额定值而其他输出电压则会高于额定值,如果电源无法满足电脑硬件的需要这种电压的变化就会更加明显。一、&电源输出电压的合理波动范围电源输出的正电压,合理的波动范围在-5%~+5%之内,而负电压的合理波动范围在-10%~+10%。+5V:4.75~5.25V+3.3V:3.14~3.46V+12V:11.4~12.6V-5V:-4.5~-5.5V-12V:-10.8~-13.2V二、&电源输出波动的重要性电源输出电压的稳定性,是电源的一个重要指标,但绝不是判断一款电源优劣的唯一指标。电源性能指标非常繁多,电压的稳定性只是其中一项。只要电源输出在合理的范围内,对电脑配件都不会造成负面影响,这时电压的波动范围在1%和5%的意义是一样的,过分地关注波动的大小是不必要的。但波动的相对大小,侧面反映了电源的负载能力,波动率相对越小的电源,其实际的最大输出功率可能越大,毕竟,输出电压超出规定范围时的输出功率是没有益处的。相对来说,电压偏高比电压偏低更具有危险性,电压偏低至多引起电脑工作的不正常,而电压偏高则可能烧毁硬件。三、&不同的负载,其波动状况不一样很显然,电源输出电压的波动大小,与电源的负载是息息相关的。1、&INTEL系统INTEL&P4处理器功耗较高,有的要达到60W左右,如果从+5V取电,则+5V需要提供高达12A的电流,对电源+5V输出的要求较高,而从电源的+12V取电,只需要6A的电流,因此INTEL在主板上增加了P4专用的供电接口规范,改由+12V为CPU供电。使用INTEL&P4的CPU,由于+12V端的负载较重,会导致+12V的下跌,电源此时会自动对+12V进行补偿,但同时会导致+5V的升高。2、&AMD系统AMD的CPU普遍从+5V取电,使得电源+5V负载较重而出现下跌,电源的补偿电路自动对+5V进行补偿,结果会导致+12V的升高。3、&设备功耗的影响除了CPU,其它设备的功耗也会影响输出电压的波动。例如,硬盘和光驱使用的是+5V和+12V供电,其中+5V为电路部分供电,+12V为马达供电,不同的硬盘或光驱对+5V、+12V供应的电流大小的要求不一样,有的需要+5V提供较大点的电流,而有的则需要+12V提供较大点的电流,这都会对电源的输出电压波动有影响。还有一些显卡,功耗也特别惊人,对+5V或者+3.3V的要求也很高,这也会影响输出。4、&相同的配置,波动也会不同有实验显示,一台电脑,仅仅更换一块完全相同型号的主板,更换前后电源输出电压也会有不同。5、&电源在使用过程中的电压波动电脑在使用过程中,所消耗的功率不是固定在一个定值,也是不断波动的,电脑消耗功率的波动,同样也会引起电源输出电压的波动。玩大型的3D游戏,显卡消耗的功率要远高于做文字处理时所消耗的;看影碟时光驱消耗的功率较高。因此,电源输出电压波动的大小,与电脑的配置的具体配置以及使用等都有极大的关系,抛开电源的周边环境谈电源输出电压的波动是没有多大意义的。四、&主板BIOS和软件检测的准确性主板BIOS和一些软件检测出来的电压未必是准确的,但可以作为参考。从网友提供的截图看,BIOS或软件检测存在着一些缺陷。譬如,很多软件对+3.3V检测的结果实际上反映的是内存的外部电压,而相当一部分软件对电源输出的负电压根本不能检测,显示的数值偏差过大。BIOS或软件检测的正电压如+5V等,和实际电压也存在偏差,偏差值通常随负载的增大而增大,偏差率有时能达到1个百分点。有实验表明,BIOS或软件检测的电压与实际电压至少会产生0.02V的偏差。五、&电源波动是可调的吗?答案是肯定的。厂家在生产电源时,只要波动在合理的范围,都视为合格产品,而很少会精益求精把波动控制在更小范围,因为从厂家的角度看,范围内的波动,1%和5%的意义是一样的。电源的波动幅度,与电源的原材料是相关的。譬如,电源PCB板上的电位器,就可以调整输出电压,当输出电压偏低时,可以手动调高输出。做工比较足的电源通常都会有电位器,而劣质电源上是看不到的。一般来说,做工较足的电源更容易实现输出电压的更稳定,但这并不意味做工越足,输出电压越稳定。六、环境对波动的影响电网电压的变化,对输出电压有影响,这就涉及到电源的另一个性能指标:电压调整率。电源适应电压从最低点(通常是180V)过渡到最高点(通常是264V)时,输出电压的变化不能太大,一般要求控制在2%以内。温度也会影响波动。环境温度较高时,电子元件会生产温漂,影响输出电压的稳定性。认识电源输出电压的波动&P&很多朋友比较关心电源的品质,往往喜欢用一些软件检测电源的输出电压。输出电压的稳定性,是电源品质的一个重要指标。&BR&&BR&为了保证输出电压的稳定,ATX电源内部设计了一套补偿电路,能够根据输出电压下跌的幅度自动进行补偿来抵消输出电压的下降,不过绝大多数的ATX电源并没有为每一路输出电压提供单独的稳压电路,而是同时补偿,这样就容易出现一个特殊的现象,比如+3.3V、+5V和+12V中的+5V因为负载太大而导致输出电压开始下降,电源会同时增加这三路的输出电压,并不会单独对+5V进行控制,其结果必然导致+3.3V和+12V的输出电压过渡补偿而超过额定的电压,当电源设计欠佳或输出功率不足时这种特有的现象就更加明显!&BR&&BR&实际使用中输出电压下降与上升的现象往往会同时出现,其中负载大的一路其输出电压往往小于额定值而其他输出电压则会高于额定值,如果电源无法满足电脑硬件的需要这种电压的变化就会更加明显。&BR&&BR&一、&电源输出电压的合理波动范围&BR&&BR&电源输出的正电压,合理的波动范围在-5%~+5%之内,而负电压的合理波动范围在-10%~+10%。&BR&+5V:4.75~5.25V&BR&+3.3V:3.14~3.46V&BR&+12V:11.4~12.6V&BR&-5V:-4.5~-5.5V&BR&-12V:-10.8~-13.2V&BR&&BR&二、&电源输出波动的重要性&BR&&BR&电源输出电压的稳定性,是电源的一个重要指标,但绝不是判断一款电源优劣的唯一指标。电源性能指标非常繁多,电压的稳定性只是其中一项。&BR&&BR&只要电源输出在合理的范围内,对电脑配件都不会造成负面影响,这时电压的波动范围在1%和5%的意义是一样的,过分地关注波动的大小是不必要的。但波动的相对大小,侧面反映了电源的负载能力,波动率相对越小的电源,其实际的最大输出功率可能越大,毕竟,输出电压超出规定范围时的输出功率是没有益处的。&BR&&BR&相对来说,电压偏高比电压偏低更具有危险性,电压偏低至多引起电脑工作的不正常,而电压偏高则可能烧毁硬件。&BR&&BR&三、&不同的负载,其波动状况不一样&BR&&BR&很显然,电源输出电压的波动大小,与电源的负载是息息相关的。&BR&&BR&1、&INTEL系统&BR&INTEL&P4处理器功耗较高,有的要达到60W左右,如果从+5V取电,则+5V需要提供高达12A的电流,对电源+5V输出的要求较高,而从电源的+12V取电,只需要6A的电流,因此INTEL在主板上增加了P4专用的供电接口规范,改由+12V为CPU供电。&BR&使用INTEL&P4的CPU,由于+12V端的负载较重,会导致+12V的下跌,电源此时会自动对+12V进行补偿,但同时会导致+5V的升高。&BR&&BR&2、&AMD系统&BR&AMD的CPU普遍从+5V取电,使得电源+5V负载较重而出现下跌,电源的补偿电路自动对+5V进行补偿,结果会导致+12V的升高。&BR&&BR&3、&设备功耗的影响&BR&除了CPU,其它设备的功耗也会影响输出电压的波动。例如,硬盘和光驱使用的是+5V和+12V供电,其中+5V为电路部分供电,+12V为马达供电,不同的硬盘或光驱对+5V、+12V供应的电流大小的要求不一样,有的需要+5V提供较大点的电流,而有的则需要+12V提供较大点的电流,这都会对电源的输出电压波动有影响。&BR&还有一些显卡,功耗也特别惊人,对+5V或者+3.3V的要求也很高,这也会影响输出。&BR&&BR&4、&相同的配置,波动也会不同&BR&有实验显示,一台电脑,仅仅更换一块完全相同型号的主板,更换前后电源输出电压也会有不同。&BR&&BR&5、&电源在使用过程中的电压波动&BR&电脑在使用过程中,所消耗的功率不是固定在一个定值,也是不断波动的,电脑消耗功率的波动,同样也会引起电源输出电压的波动。玩大型的3D游戏,显卡消耗的功率要远高于做文字处理时所消耗的;看影碟时光驱消耗的功率较高。&BR&&BR&因此,电源输出电压波动的大小,与电脑的配置的具体配置以及使用等都有极大的关系,抛开电源的周边环境谈电源输出电压的波动是没有多大意义的。&BR&&BR&四、&主板BIOS和软件检测的准确性&BR&&BR&主板BIOS和一些软件检测出来的电压未必是准确的,但可以作为参考。从网友提供的截图看,BIOS或软件检测存在着一些缺陷。譬如,很多软件对+3.3V检测的结果实际上反映的是内存的外部电压,而相当一部分软件对电源输出的负电压根本不能检测,显示的数值偏差过大。BIOS或软件检测的正电压如+5V等,和实际电压也存在偏差,偏差值通常随负载的增大而增大,偏差率有时能达到1个百分点。有实验表明,BIOS或软件检测的电压与实际电压至少会产生0.02V的偏差。&BR&&BR&五、&电源波动是可调的吗?&BR&&BR&答案是肯定的。厂家在生产电源时,只要波动在合理的范围,都视为合格产品,而很少会精益求精把波动控制在更小范围,因为从厂家的角度看,范围内的波动,1%和5%的意义是一样的。&BR&&BR&电源的波动幅度,与电源的原材料是相关的。譬如,电源PCB板上的电位器,就可以调整输出电压,当输出电压偏低时,可以手动调高输出。做工比较足的电源通常都会有电位器,而劣质电源上是看不到的。一般来说,做工较足的电源更容易实现输出电压的更稳定,但这并不意味做工越足,输出电压越稳定。&BR&&BR&六、环境对波动的影响&BR&&BR&电网电压的变化,对输出电压有影响,这就涉及到电源的另一个性能指标:电压调整率。电源适应电压从最低点(通常是180V)过渡到最高点(通常是264V)时,输出电压的变化不能太大,一般要求控制在2%以内。&BR&&BR&温度也会影响波动。环境温度较高时,电子元件会生产温漂,影响输出电压的稳定性。电源输出的正电压,合理的波动范围在-5%~+5%之内,而负电压的合理波动范围在-10%~+10%。+5V:4.75~5.25V+3.3V:3.14~3.46V+12V:11.4~12.6V-5V:-4.5~-5.5V-12V:-10.8~-13.2VBIOS或软件检测的电压与实际电压至少会产生0.02V的偏差
生命诚可贵,金钱价更高,若为女人故,两者皆可抛~~
发帖目的是为了提高坛子里买家的电源知识,从电源PC电源FAQs到代工厂实力、一直说到牌子,前世今生,无所不包,号称网络上最强大的电源贴之一!虽然字数、图片可以用海量计算,但是为了广大买家利益,还是要发出来,辛苦点也值得!&此文必须感谢玩家堂几位元老级人马,正因为有他们这种不辞劳苦、锲而不舍的精神,才有了这篇让广大买家受益的强文!大家必须要记住这几个名字:&Ronliang跨3年巨作...Travis不眠校对...弄到脖子断了的专题&内容目录:第一篇:第二篇:第三篇:&&&&By&Ronliang&本文欢迎转载,请注明电源频道原创,作者Ronliang,原文地址目录================================第一部分&PC电源FAQs1,我的机器需要多大功率的电源?2,电源额定功率越大越费电?3,主动PFC的电源更省电(费电)?4,现在电源的多路12V是怎么分的?5,电源好坏看重量?6,电源的铭牌怎么看?那些功率数都是啥意思?那些1.3/2.0/2.2之类的标准都是啥?第二部分&展开来说电源1,电源的标准以及“多路”12V2,电源的输出功率3,电源的效率4,电源的噪音5,电源的接线6,电源的寿命7,电源的待机功耗正文=================================第一部分&PC电源FAQs计算机电源负责主机内所有元件的供电,自然成为了整个机器稳定的基础,而近些年硬件(CPU,显卡)的功耗激增,也为高功率、高品质电源提供了更多的用武之地。现在相当一部分DIY消费者也已经不满足于有仅仅一个“能用的电源”。让各位看官对电源有个大致的认识,就是本文的目的所在了。PC电源FAQs这个部分算是个初级入门篇,目的在于给之前对电源并不了解的网友们一些解释。&&1,我的机器需要多大功率的电源?在高性能低功耗CPU的普及,和集成显卡、和低端独立显卡性能的不断提高,现在能满足一般应用的大部分平台的耗电并不高。一般集成显卡的低端机器(一光驱一硬盘CPU也不高),随便找个市面上的非杂牌的电源都能搞定。一般的有独立显卡的机器呢?现在卖的PCI-E的显卡,只要没有外接的6pin的电源接口,CPU不高,硬盘2-3个,那300W的也都轻松搞定,不少250W额定的也都能应付。稍微发烧一下,CPU上个4核,只是“温柔的”小超一下,显卡就一张,不搞一些牛卡SLI/CF之类,也没有挂一串硬盘的习惯,那400W-450W额定的电源也足够了。如果是一些不常见的配置呢?比如ftp的机器,硬盘多。那一个硬盘算耗电&15W,计算上启动时候12V上的瞬时电流,算12V取2.5A-3A,5V取1A的供电要求,这样估算相对好算一些,余量留得也不小。如果硬盘支持顺序启动的话12V按1A估算也就足够了。那如果超频呢,超频的话要留得余量就高一些,对电源的质量要求也高一些。仅仅是中低档CPU或者是中档显卡的一般幅度超频的话,买比不超频的时候梢高50W-100W的电源比较合理。如果搞高端显卡的双卡SLI/CF的话,还是别低于600W了。至于米人玩高端三显卡、四显卡的情况,直接买当前最新锐的千瓦左右的产品更为合适。不要认为厂商默认接出来的接口是计算过的。虽然一般来说功率越高的电源接口就越多,但这两者之间并不是严格对应的,并不是说厂商引出了多少接口,就能保证这些接口都插满也一定没事。也不能说接口少的电源功率一定不足。再推荐一个在线估算功率的地方网页:这个地址的计算器也是有缺陷的,安全起见,在估算结果上再留出一些余量比较合适。最后要说的一点是,尽管不能说电源额定功率越大质量就越好,但鉴于国内零售市场的电源的实际水准,普通电源在低端180-300W这个档次,确实在统计意义上,随瓦数的提高有质量上的提升。即使是集成显卡的低端平台,如果预算允许的话,选择台厂大厂OEM的额定250W或者国内大厂(航嘉/长城)的额定300W也还是有意义的。&2,电源额定功率越大越费电?答案是不会更费电现在高输出功率的电源也真层出不穷。现在零售ATX电源功率最高的是Ultra的X3&1600W(这个产品最初规划的可是2000W,安全原因被改成了1600W)。这不都赶上空调了么?用这样的电源岂不是电表要刷刷的转?这里的电源的额定功率是指最大的持续输出功率,表明一个最大的输出能力。实际耗电还是要取决于其它配件的功耗和电源本身的转换效率,而跟电源的额定功率并没有多少关系。而且,有的时候适当的提高电源的档次,会因为转换效率的提高,反而更加省电。就像家里换了一个更粗更高级的水龙头,不能说就会更费水。还是你用多少水,才会交多少水费。说不定新水龙头因为解决了之前的细水龙头的漏水问题,还更省水了呢。那么,单纯从省电费的角度来说,多大功率的电源合适呢?一般来说,电源在20%负载以上才会有较好的转换效率,并在40%-60%左右达到峰值。因此主机IDLE状态下功率不低于整个电源的20%,满载状态下不超过60%太远,则是最为理想的。&&3,主动PFC的电源更省电(费电)?现在连看很多的电源官方广告都在宣称主动PFC,转换效率更高(满载时高达99%),更省电。实际上学电的人都知道,在交流电中功率因数校正电路(PFC)跟电源的转换效率并没有关系。功率因数是有功功率和视在功率的比值。电源的功率因数越接近1,那么在电源的输入电源线上的无谓的电流流动就越小。而体现在家里的电表上也只是这一点点的完全可以忽略的区别。那么现在有人说主动PFC电源更费电是怎么回事呢?主动PFC的实现需要专门的主动PFC控制电路,这个控制电路本身是要消耗电能的,输入功率越低、输入电压越低,就越低效。而被动PFC仅仅是串接了一个大电感,损耗相对主动PFC来说要小一些。单讲PFC这个环节,主动PFC确实是更费电,也没有被动PFC可靠。但是如果看整个电源,带有主动PFC往往档次更高、更先进,实际的整体上的转换效率在统计意义上更高,也更加环保,而且主动PFC的产品还均具有宽幅电压自动适应的特性。结论是什么呢?考虑效率的话,不用关心是主动PFC还是被动PFC。&&&4,现在电源的多路12V是怎么分的?那些接口是从哪路12V取电的?按照Intel的ATX&12V&2.x标准,300W及以上12V要分成12V1和12V2两路,其中12V2专门负责4pin(2×2)口供电,专门为CPU单独限流,而其它的都走12V1。现在看来,12v2专门给CPU大部分时候有些浪费。实际中也有部分电源“假多路”,实际上两个12V输出是接在一起的。现在也流行在12V2上引出了别的接头。举个例子,益衡的ATX-0250G,12V2分别接入了2*2的4pin,8pin中4个12V的两个,以及6个SATA硬盘供电口的3个。剩下的走12V1。通过这样的办法平衡两路的限流资源。对于那些12V多于2路的电源,因为没有标准来约束,分配完全取决于厂家自己。大部分厂商的产品文档在12V的分路方法上语焉不详。而且有的时候即使是统同一型号的电源,版本和版本之间就会不一样。要确定这个还是要依实际到手的产品而定。每路12V在线材颜色上是有变化的,可以依此来确定。*对于EPS12V标准的工作站/服务器电源产品,会有更多另外的EPS12V标准的约束。&&5,电源好坏看重量?这倒是个很方便的检查方法。看看电源好坏的话只要拎过来看看沉重就好了。好的电源元件多指标高重量也就实在。但是过于简单的方法必然是有问题的。如果说一个电源很重,比一般的都重不少,那么一般来说也比一般的电源好;如果和一般的电源都差不多,那就啥都说明不了;如果一个电源比一般的轻,那也别先下结论说这个电源就不好,看看是不是主动PFC先。中高端的电源我们先撇开不谈,只局限于市售的300W及以下的电源。电源的沉重一般取决于两个:散热片的大小和被动PFC电感。这两个构成了低端电源重量差异的大部分,变压器和别的元件一般重量差不多或者重量可忽略。如果用的PFC电感是纸糊的,那电源必然轻。散热片大一些的话电源也会很沉。因此可以知道,如果一个电源和别的差不多重量,只能说这个电源没有特别偷工减料。体现品质的关键部分还没涉及到呢。即使是涉及到的PFC部分,也有国内的厂家只是有钢片而已,完全没有接到电路里面去。如果遇到了一个主动PFC的300W以下电源(例如富士康的台达代工的凯旋骑士250W),因为没有PFC电感这一大块压秤的,电源会比一般的被动PFC电源轻。如果有轻的电源都不是好电源的习惯思维的话,那就会把高级货当成山寨货了。但如果不是主动PFC的电源的话,轻的电源就基本上等价于山寨货了。至于怎么看是不是主动PFC,不看内部的话看铭牌上的输入电压范围,90V-240V宽范围适应的都是主动PFC。有兴趣进一步地确定一个电源的好坏的看官,可以参考这篇帖子。&&6,电源的铭牌怎么看?那些数都是啥意思?那些1.3/2.2之类的标准都是啥?对一般用户来说,电源的铭牌上有用的信息主要是电源的额定功率,电源版本和电源的输出能力的表格。对于电源来说功率一般有额定功率和峰值功率两个指标,额定功率是指电源在一定温度下长时间持续输出的最大功率。峰值功率是指电源短时间内(例如17秒)可以输出的最大功率。市面上不少电源都没有明确的标出电源的额定功率。有些电源(如antec,zippy)标的是最大功率,一般也相当于额定功率(额定功率的英文一般就是Max&power,但是也有例外,比如acbel就对部分型号分别用max&power和output&power区别峰值和额定。还好最新的R88系列没有玩这一招。不过对航嘉来说,Max&Power成了峰值功率,额定功率非要用“continues”)。而峰值(peak)功率是没有意义的。峰值功率只是js用来把250W的电源说成350W用的。在市场里问商家航嘉冷静王加强版是多少瓦的,得到的不少回答会是350W。电源铭牌上也会标出电源的标准,比如1.3版,2.2版这样的。这表明了该电源符合哪一个级别的ATX12V标准。对一般消费者来说,1.3版的电源目前一般不会买回来用不了,2.0以上的产品差异都不大。数字越大表明产品推出得越晚。对新设备的适应性更好。一般铭牌都会标注各路输出的限制。比如12V每路最大电流是多少安培;3.3V/5V的最大电流是多少;5Vsb的最大输出是多少。一般来说,这里每一路标的是限流值,是电源在这一路的过流保护点的下限值。而并不代表每一路都能同时达到各自的最大值。例如某电源有5路12V,每路标记15A,并不代表这个电源12V一定有5*15A的能力,而是说每路低于15A的话,按设计不会启动过流保护。真正的12V输出能力,需要看铭牌中给出的各路12V的联合输出数值。一般来说,因为电路结构的原因,铭牌也会给出3.3V/5V的联合最大输出功率;另外,受电源整体的散热、PFC部件等限制,一般也会标注3.3V/5V/12V的联合输出功率。一个规范的铭牌,都会对各路的限流数值、联合输出功率有详细的标注。如果铭牌表示的不规范,那就要对这个电源的品质打问号了。不规范的厂商怎么能生产出规范的产品呢?如果标示的数字不够Intel的标准要求(比如曾经的磐石500&2.2版,+5Vsb达不到Intel在2.2规范里面的2.5A,12V的输出能力也弱于标准和自己的标称),那就要怀疑一下厂商的小动作了。
08:57:34 修改
生命诚可贵,金钱价更高,若为女人故,两者皆可抛~~
第二部分&展开来说电源&1,电源的标准以及“多路”12V电源的标准可以说相当的丰富,有厂商自己定义的标准,也有一些业界统一的标准。我们最常见的电源标准是由Intel领导制订的ATX&12V标准。详细制订了电源的功率输出,效率,信号时序,噪音,接头,铭牌/标签等要求。其中尺寸、固定螺钉位置等细节承接早期IBM的PS2的内部标准而来,因此现在ATX规格的电源有的时候也被称作PS2尺寸的电源。现在最新的ATX12V是2.31版。分别就不同时期的硬件发展做出修订。细节上的更改非常多。详细的变化可以查阅Intel标准文档的Changelog,主要说来1.3标准开始引入cpu辅助4pin接口;2.0标准开始对各级别产品大幅强调12V的输出能力,规定12V输出要分12V1和12V2,主板20pin改成24pin;2.01标准开始去掉-5V输出;2.1/2.2标准开始引入450W的输出级别的规范,加强了5Vsb待机电流的输出,加强了对两路12V的峰值输出能力的要求,提高了最低转换效率的要求2.3标准开始更新、拓展、细化了从180W至450W的功率范围的输出要求,重新修订了各功率级别交叉负载的指标,增加了启动阶段交叉负载的指标,调整了各路12v的峰值输出,把80plus效率标准作为建议,对300W以下额定功率的电源去掉了分2路12V的限流要求,。2.31标准则在2.3标准的基础上做了细微的修正。另外Intel也规定了一些特殊尺寸的电源,CFX12V/LFX12V/SFX12V/FlexATX。而在现有的BTX标准中,并没有重新制定新的电源标准,而是直接沿用了现有标准。没有所谓的BTX标准电源。ATX12V标准中,包含了部分的规定性的内容,也同时包含了大量建议性的内容。例如2.3标准中的满足80plus的转换效率,就是个建议性的内容。而强制性的转换效率的要求远没有这么高(用户千万不要受国内某些媒体的影响,认为2.3版的产品就代表了更高的效率)。ATX12V标准尽管是电源产品的主导性的设计规范,但也仅仅是一个设计规范而已。并没有一个机构来测试、认证产品是否严格满足设计规范(旁白:有认证的又如何,不就多了个CCC么)。产品到底满足不满足、满足哪一个标准,全凭厂商自己的一张嘴。对没有自觉的厂商来说,即使是标准中的强制性要求也白搭,因为本身“ATX12V就不是个强制标准”嘛。反正用户也没有专业设备去一项一项测试,顶多看看铭牌的各路“输出能力”指标。同一个东西换个铭牌就能通吃2.0/2.2/2.3。即便是正规厂商,也很少有拿ATX&12V规范当圣旨的。在服务器/工作站领域,会有EPS标准。其中ATX尺寸的电源的标准为EPS12V。也是Intel领导制订的。ATX12V标准现在最高制订到450W,而550W-950W的标准就归EPS12V了。08年最新的EPS12V标准也依然建议类似80plus铜牌的效率标准。制订了比ATX12V更详尽的各路12V的接口要求。例如对于5路12V输出的电源,CPU的8pin取12V1和12V2,12V3接入主板的24Pin,外围设备取12V4,显卡的PCI-E供电取12V4或者12V5等等。EPS标准对于目前的高端大功率的PC电源,起到了一定程度上的指导标准的作用。在这部分再次说一下12V的分路限流问题。其实把12V分成多路的目的和作用并不是让各路12V输出之间相互不影响。而是为了安全考虑,限制每路12V输出不超过240W,超出这个数值就应该启动过流保护。也就是说,不是独立生成,而仅仅是分路限流,是出于安全考虑,为电源设了限制。对于绝大多数电源,12V都是从一个变压器的一个抽头出来,一起经过功率管,一起滤波,只是在最后监测电流的时候被分出来的,意义仅限于分开限流而已。多路12V对玩家来说反而是个麻烦的枷锁,尤其是有高端显卡的用户。所以现在很多玩家定位的电源在强调单路12V输出,更有不少电源厂商偷偷摸摸的在铭牌标着多路12V,而实际上所有12V都从一根线上引出来(例如大部分Seasonic生产的型号)。即使是做了多路限流的电源,有些产品的实际限流点也比标称的高一些,而且还是一个大致的范围,要知道想把限流保护做得十分精准是要花费额外的成本的,而且太过精准了对玩家来说绝对不是好事。例如Acbel&R88&600W,12V三路限流,分别标称最大输出25A,但每路限流点指标标在了35A/35A/40A。再比如新巨为一款12V单路输出最大为50A的电源,标注限流保护点范围是55A至68A。(换句话说,绝对不能以是否触发保护判断是否过载,正常情况下触发保护的时候已经超出额定工作状态不少了。)具备完全独立的两路12V电源现在也有,例如Enermax的galaxy系列;例如CWT代工的W的PUC大功率方案。不少高功率的电源都有两个(甚至三个)主变压器,以防止过大的功率引发一个变压器的饱和,这种情况下,是否有两路以上完全独立(或是相对独立)的12V输出,则需要具体问题具体分析了(不过个别电源,比如Topower的产品,12V从主变压器出来之后就合在一起了,这个就完全在把两个主变当作一个变压器来用了)。当然,绝对不是说有两路独立输出的12V输出的电源就比只有一路独立输出的12V电源要强。有两路独立输出的12V的产品,在使用中需要注意尽量避免将独立的两路12V都接到同一负载上。2,电源的额定输出功率电源的额定输出功率的标准是,电源可以在一定的环境温度下,可以持续的(24*7)输出一定功率,并且输出电压、纹波等指标满足标准,转换效率没有暴跌,MTBF数值也满足一定的水准。更深入一点说,是电源内部不存在温度失控的点,所有器件均能保持合理的工作温度。这些标准任何一点满足不了,我们就可以认为,这个电源存在某种程度的虚标。目前的情况是,电源的输出功率的标定是个相当随意的事情。尽管Intel有严格而详细的标准来规定各级别的输出功率(主要体现在Load&Ratings和Cross&Loading&Graph),但客户和消费者不会拿着仪器,对着标准去测吧?各个电源的输出能力根据设计和用料,其实千差万别。不同厂商留出的电源余量是不同的。电源输出功率的混乱也是有客观原因的。电源的输出能力随温度的升高会显著下降的,这是因为电源内采用的功率管的特性的原因。因此,在什么温度下确定的额定功率就是一个问题。负责任的厂商会在50度的时候确定额定功率,而大部分厂商就会在室温(25度)的时候标定。这就导致了电源的实际输出水平差异很大。毕竟要在高温的时候保持一定的输出和长时间的稳定性,不少部件的成本都要跟着上升。在实际应用中,大部分人都不会给电源单独的风道,电源都要直接吸入机箱内被显卡和CPU加热过的空气,因此室温环境中确定的最大功率对大部分用户来说并不实际。(因此有的时候仅仅是散热的变化就能轻易地让同样的电源的额定功率上下浮动50W)让问题严重的是,现在很少有厂商披露额定功率的温度环境,即使是一些大厂名厂的产品。需要注意的是,额定功率的标定温度并不是一般标为0—40/50度的“工作温度”的上限温度,二者除了标定温度不会超过工作温度上限之外,并没有直接联系。一般来说环境温度超过工作温度的时候,电源的寿命、输出功率等特性就会严重劣化。依照Intel网站和部分厂商官网的数据,绝大部分的台达GPS系列,FSP,Acbel是25摄氏度的标定;Seasonic一般是40度的标定。这些电源在50摄氏度下的标定功率都有一定的缩减,但大多仅仅是厂商的一些习惯。例如Seasonic标定在50度下输出功率是0&-&40度下的80%;例如Delta和FSP习惯标定50度下比40度下少50W(显然不大合理)。现在整体的情况是,Intel方面仅仅是建议50度下标定功率,而各家的温度标定又很不统一,不同品牌之间的标定并不能相互参考,不能说40度下标定的就一定比25度标定的同功率电源有更多的余度。就算是同样是25度标定额定功率的,有些产品在40多度的环境下还能输出额定的功率,而有些型号的输出能力会有非常大的跌幅。甚至有些时候同品牌的不同产品都不能相互比较。例如Antec的顶级signature系列,40度下的功率标定,而NeoPower/TruePower&Trio等系列反而号称50度标定。除了跟温度,电源的输出能力还跟输入电压有关。输入电压越低,越不利于功率输出。一般来说电源应该按可工作的最低工作电压标定功率。例如主动PFC的电源应该在90V输入下标定。但有相当一部分电源并不如此厚道。而且标出额定功率标定的输入电压条件的产品,比标出温度环境的更为稀少。甚至有的不规范的厂商直接的虚标额定功率。例如CoolerMaster的外销的Seventeam&OEM的低端超强系列,额定功率直接被标高100W(内销的魔石系列就更不用指望了)。而有的时候因为各方面的原因,即使是名厂名牌电源也有达不到最大功率的时候,例如Acbel就有数次送测的高端电源甚至没法达到标称的额定功率。当输出超出一个电源的输出能力时,有些时候表现为电源的保护电路启动,直接关机;有些时候表现为输出的劣化(纹波、杂讯、输出电压、保持时间超标,转换效率骤降等等);寿命也会受到严重影响。一般来说,电源都有一定的非长期的超过额定负载的承受能力。到底能超过额定功率多少,要取决于厂商的厚道程度和保护点的设定。例如,50度环境下标定的产品在室温25度时的输出能力自然会有20%-25%左右的提高。但是,不建议让电源长期工作在超过额定输出功率的状态。同时,消费者在比较不同电源的真实输出能力的时候,也不应单纯看额定功率的标定,而应具体情况具体分析,标注700W的电源的输出功率未必就比标注750W甚至800W、900W的产品的输出功率低。一般负载下的功率是这样,拉偏的时候的功率输出要求就更高了。理想情况下,某一组电压输出的能力应该不受其他组电压输出状态的影响。但实际各组电压之间是会受到相互的影响的。电源在均衡负载之外的输出能力就是交叉负载(Cross&Loading)能力了。一个电源交叉负载的水平一方面跟各路相互独立的程度有关,也和各路实际输出能力和标称值相比是否达标有关,二者缺一不可。Intel标准中规定的Cross&Loading&Graph的要求,其实很多电源,包括部分“大厂”产品,都达不到。现在不少厂商倾向更重视12V的输出能力,而对3.3V或者5V的输出能力并不重视。结果是只有一小部分的产品才具有良好的交叉负载能力。看X-bit&Labs的数轮ATX电源横向评测就可以很好的看出各个电源的拉偏性能,其中FSP的GreenPower结构的一些电源就很明显的看出在拉偏方面的缺陷。下图是Intel的ATX12V标准对300W电源的交叉负载能力(Cross&Loading)的要求的演进,对应的封闭框框起来的范围就是要求满足该规范的电源必须能够正常输出的功率组合。可以看出,自ATX12V&2.0开始,相比早先的ATX12V&1.3,开始大幅倚重12V输出。而自ATX12V&2.3开始,降低了大输出情况下的交叉负载要求,强化了12V的最小输出电流,同时对两路12V的限流值(持续和峰值)做了重新分配。(注意2.3版标准里面12V的持续输出最大值和1.3版标准里面是一致的。这就是为什么内地市场中大量的1.3标准的中低端老产品在2.3标准推出之后迅速改头换面的原因之一。300W以下取消了分双路限流的要求则是另一个原因。这两个原因得以使300W以下1.3标准的产品升级到2.3甚至2.31标准几乎没有额外的成本)&图:300W&ATX&12V标准交叉负载图的演进各路输出有最高的限制,同时各路输出也有最低的限制。Intel最近这几次规范,在最低输出要求上有所强调。分为开机时候的动态情形和持续的最小输出两种。一般来说,详细的铭牌会标出每一路的最小输出的数据。但绝大部分电源并不会有这样详细的标注。在判断电源的功率是否足够的时候,大部分人会去判断某一路电压的绝对值有多低:过低了的就是功率不够了,比如12V输出离12V不远就是功率还够。实际上这只是判断负载是否超出额定功率的一个角度。很多情况下超出电源的额定功率的时候并不必然表现为某一路电压过低。甚至部分电源某些路随着负载的升高,输出电压反而会升高。很多人对新买回来的大功率电源负载轻轻就11.9V、11.8V颇感揪心,实际上大可不必。对于电子设备来说,绝对值只是一方面,但稳定性更为重要。绝对值只要保持在一定的范围内就好,而电压“纹丝不动”才是王道。3、电源的效率电源的转换效率是指直流输出的功率与交流输入的功率(有功功率)之比。这是一款电源省电与否的标志。效率越高不但越省电,而且发热越低,对电源的静音和稳定性都有好处。近些年PC电源的技术进步,相当一部分体现在效率的提高上(具体的技术这里暂时省略)。&电源的效率受实际的负载的影响最大,其次受温度和输入电压也有一定的影响。一般来说,温度升高,效率会略有降低;对于主动PFC的电源,输入电压升高,效率也会提高。电源的效率相对负载的变化情况比较复杂,按照ATX12V&2.3中的测试条件,电源一般在典型负载(50%)左右达到最大效率。当然,还是有些特殊的电源的。比如有的电源满载的效率不比典型负载的时候差,有的电源有着比一般电源更出色的轻载性能。上图给出了两个80PLUS铜牌产品的电源的效率随输出功率而变化的曲线。曾经有一个说法,就是高效率的电源内部会相对比较空,过多的元件不宜于效率的提升。典型的例子就是FSP的GreenPower,Seasonic的电源内部也较空。实际上这是不对的。GreenPower元件少主要的考虑是欧洲的WEEE法案,元件少的产品要付的资源回收费用也就小。而现在服务器工作站级的产品也都在普及能源之星4.0的标准,符合80plus的服务器产品也越来越多了。OCZ的FSP&OEM的ProXstream&1000W&(已停产)就是个80plus的双层PCB的电源,类似的例子还有Dell的XPS&7系列的750W/1000W产品,也都是80plus认证的双层PCB的电源。台达电子宣称,在2010年将量产“90plus”的产品,也同样会应用在服务器电源产品领域。
08:59:16 修改
生命诚可贵,金钱价更高,若为女人故,两者皆可抛~~
提到电源效率,就不得不说80plus这个美国的标准了。其测试标准是依照ATX12V的测试方法,在轻载(20%),典型负载(50%)和满载(100%)的时候效率均超过80%。并且PF值&0.9(基本在要求主动PFC)。获得80plus认证的电源会贴有80plus的标志,在美销售的可以按销售数量享受美国的补贴。ATX12V,EPS12V都把80plus当作效率的推荐值,能源之星4.0标准干脆把80Plus的要求作为电源产品的子标准之一列入。HP、Dell和Lenovo(Think&Series)这些国际品牌机厂商已经有相当数目的认证产品出现,几乎全线普及。基本上所有的大厂都有一定数量的80plus型号。而在国内,80plus在中高端的零售电源中十分普遍,而遗憾的是,国内的大部分品牌机产品还对嘴皮子之外的节能没什么兴趣。随着时间的推移,国际上环保节能标准也在逐步提高。2007年下半年,Google和Intel牵头建立起更进一步的CSCI(Climate&Savers&Computing&Initiative)组织,旨在使2010年,降低计算机产品50%的能源消耗,同80plus协作,制定出金、银、铜牌三个进一步的标准,并在未来的几年内逐渐推广。新的标准和推广进度如下表所示:80plus的认证是认证到具体型号的。也就是说,没有在80plus网站上列出的型号并不算通过80plus认证。这虽然像是在说废话,但实际上在市场里可以看到不少其他的型号通过了80plus,与其相类似的型号也宣传“80plus”的情形。同样内部结构,内部图几乎一样的两个产品,实际效率可以有天壤之别(FSP以及其代工的GreenPower结构的形形色色的电源就是很好的例子);同一个系列的产品,仅仅是功率的不同,就会影响80plus测试点的选取,从而影响最终的结果(这的例子在80plus网站上相当的多)。为了节约能源,消费者理应尽量选择高转换效率的产品。高的转换效率也意味着新技术、新元器件的应用。但是,消费者也应该看到和转换效率的测试数字相联系的一些细节。例如,在规范允许的范围内“适当”的调高输出电压,可以让总体的转换效率更高一点(如果看到某电源12V出现12.5V这样的电压,要小心了);例如,现在80plus及各网站的测试,在效率测试的各路输出功率分配上,依照的并不是ATX/EPS等设计规范,而是采用厂商铭牌提供的12V最大输出和3.3V/5V联合最大输出各自按比例缩减的办法。12V的转换效率自然要高于5V和3.3V的转换效率。一方面现在新型号电源在标注上12V最大输出能力均十分接近电源总功率(拿下80plus银牌的Enermax的Revolution&85+甚至做到了总功率1050W,12V输出标注1044W的水平,和1050W仅仅有文字上的差异),在测试中的12V输出所占比例就比以往要高,转换效率的数字自然相比以往的产品要占一些便宜;那么另一方面,如果一个电源如果交叉负载做得非常好,5V/3.3V的部分很强劲,铭牌中对5V/3.3V最大联合输出功率标注的比较高,那么在测试中,12V输出功率的比例就会减小,最终的转换效率就越吃亏。这个内容在讲国际品牌的电源的时候还会结合一些例子。以上所列还都算“合理利用规则”,但对消费者来说,最好在平时关注效率测试数据的时候多张几个心眼,多关注一些效率数字之外的细节,以免为厂商的“花招”多掏钱。当然,现阶段也有不少厂商在宣传的过程中,在效率问题上虚标。其中一个例子是国内航嘉在数款电源上声称转换效率高于83%,实际上是指特殊负载下的最高水平,彻头彻尾的虚标。再比如Acbel在80plus之外,给自己的产品贴上85plus、88plus的标签,实际上也仅仅是110V下50%负载左右才能达到这样的水准,是这个电源的最好水准的效率数字,改作85minus,88minus才更适合。4,电源的噪音电源的噪音大部分是风扇,再就是里面元件(主要是电感)的震动噪音。后者基本上可以认为是电路设计、选择的元件质量的问题和生产过程中加固胶的工艺等问题引起的电源内部线圈的振动。这种线圈(电源输入端的EMI、PFC线圈以及输出侧的线圈)的振动,有的时候轻微,例如不少机器候随鼠标拖动网页滚动条而变化的“电流声”;有的时候就会很大,例如和一些显卡的供电电路在一定的负载条件下谐振而发出的啸叫,这种声音的成因比较复杂,这里无法详细展开,主要讨论电源的风扇转动发出的声音。电源的噪音和高性能是一对矛盾体。风扇转速高,散热好,性能和稳定性就会提升,而噪音就会大。如果为了噪音,降低风扇转速的话就要牺牲性能和稳定性。解决这两个矛盾的办法就是提高电源的效率,以此来降低发热。因此现在在静音方面走在前列的厂商,基本上在效率上也走在前列。静音的另一个要求是功耗,以现在的水平,除非是全无扇电源,在满载的时候是不会安静的。所以一般打造静音系统的时候,总功耗不能高,而且不宜超过电源的典型负载(50%)太远。轻载时风扇转速低取决于温控电路的设定。一般以静音为卖点的电源的温控电路触发电源风扇加速的阈值温度设得较高。设置的最低的转速也很低,12cm的风扇也就800转/分钟左右,而当前Enermax的部分最新产品已做到轻载450转/分钟的水平。一般来说转速在900转/分以内时候,电源风扇已经不会是机箱中最吵的部件了,这时候最吵的往往是你的硬盘。12cm风扇的电源因为同转速风量的优势,比8cm/9cm的产品更容易静音。但8cm/9cm风扇的电源也是有超静音的例子的。不过因风道和占用空间较大等原因,12cm/14cm风扇的电源暂时还没有在正规的服务器和工作站的产品中出现。因为风阻的原因,内部元件太过拥挤的电源很难做到超静音(这也是为什么双层PCB结构的电源只有在9cm风扇10cm高的厂商自定义产品中才有超静音产品的原因。当然,现在也有例外,例如Antec的Signature系列产品。相信随着效率的进一步提高,例外的例子会越来越多)。一般来说,在同一个系列的产品里,大功率型号的风扇的起转转速、最大转速等设置要高于低功率的型号。例如,下图是Enermax官方给出的Revolution&85+系列的温控图示意图,可见最大功率的1250W型号的风扇转速(黄线)要比同系列其他型号的转速(绿线)要高一些。5,电源的接线PC用电源是多路输出的AC-DC开关电源。而各组输出按标准要求分别采用了不同颜色的导线。例如5V输出用的是红线,3.3V桔黄色,黑线是地线,各路12V稍有区别,但都是黄色或者黄色和其他颜色的搭配。用下图给出了24针主板电源接口的示意图。一般来说判断电源是否挂掉了的短接绿线和黑线,实际上就是通过PS_ON给电源一个开机的信号。其他的电源接口,4pin(2*2)、6pin和8pin是一侧地线一侧12V;4pin的D口和软驱供电都是一根12V一根5V两根地线;而SATA供电接口则是12V/5V/3.3V各一根外加两根地线。5,电源的接线PC用电源是多路输出的AC-DC开关电源。而各组输出按标准要求分别采用了不同颜色的导线。例如5V输出用的是红线,3.3V桔黄色,黑线是地线,各路12V稍有区别,但都是黄色或者黄色和其他颜色的搭配。用下图给出了24针主板电源接口的示意图。一般来说判断电源是否挂掉了的短接绿线和黑线,实际上就是通过PS_ON给电源一个开机的信号。其他的电源接口,4pin(2*2)、6pin和8pin是一侧地线一侧12V;4pin的D口和软驱供电都是一根12V一根5V两根地线;而SATA供电接口则是12V/5V/3.3V各一根外加两根地线。电源的接口丰富不丰富也是个衡量零售电源的标准。丰富的接口可以免去转接的麻烦。包了蛇皮网的电源线也更利于机箱内的空间整理。当前流行的模组接线方式因为可以自由管理插线也很受玩家们的喜欢。其实电源的接线也能看出一个电源的品质的。例如电线两端是不是带有EMI的磁环;例如线的插头的镀金(例如Delta的铍铜材质也很先进);例如所用电线的粗细18AWG甚至更粗的电线;例如带不带足够的8pin和6pin接口等等。虽是细节但也体现问题。比如高端显卡用的PCI-E的6pin/8pin电源接口,传输功率大,要求就要高。如果电源本身不带足够的接口,需要转接,如果转接的线材不够精细、正规的话,也很容易出问题。再比如虽然现在CPU的8pin口绝大部分主板都可以只插4pin,但还真有一些主板在这是分开供电设计的(本来EPS的要求在这里就是12V1和12V2两路)。现在很多以DIY为定位的高端电源会采用模组接线的方式接线,有一个说法是650W以上高端电源里模组接线和原生接线产品的销量比大概是3:1。有的产品甚至玩起了全模组的噱头,连主板的24pin也都模组接线了。模组接线最早是在2004年9月,由美国的通路电源品牌Ultra申请了美国专利,并在06年11月获批。于是就有了2008年4月Ultra起诉其他的22个在美销售模组接线产品的电源品牌侵权的事情。接下来可以看到很多厂商在新产品中改变了模组接线的细节处理方式,刻意绕过Ultra的专利。具体一点讲,这个专利是将电源输出线引到外壳上提供模组插座的PCB上,再由焊在PCB上插座与模组接线连接。这种方式是最可靠的模组接线做法。银欣DA系列将模组插座直接卡在外壳上,内部不通过PCB直接连到输出线的做法就明显有绕开Ultra专利的目的,但由于插座的针没有PCB固定,插拔后发生松动的机会就大些。目前各个厂商受到模组化接线专利影响的程度不一。Enermax和Ultra的官司还在继续,Modu82+还在市场上正常卖;CoolerMaster的Silent&Pro系列受到Ultra专利的影响,进入美国市场的前景就有些问题;也有像BFG这样的厂商很高调地宣称自己的模组接线产品已经向Ultra支付过专利授权金。模组接线设计最直接的好处是,买高端电源又没多少用电设备的时候,许多不用的接线可以拆下来,免得一大堆线在机箱里面占地儿。另外需要升级到新型供电插头比如8pin&PCI-E的用户可以从厂商处获得配备新插头的模组接线而不需要用转接线,HTPC用户不需要长线的可以利用全模组化设计把24pin和CPU接线换成短线,尽管这些官方的线材实际上很难获得,而且很贵。尽管模组接线带来了一些方便,但同时也引入了一些额外的接触电阻,这种接触电阻随着时间的推移和插拔次数的增加会有所提高。这些额外的接触电阻会导致更多的电压损失,而且是耗电越大,电压损失的就越多。一些大功率电源上尤其如此。当然一般来说在输出导线上产生的压降要占总压降的主要部分,两头接口处的压降只是一小部分,而且电源厂家在模组接线的型号上会略微调高电源内部PCB上的12V电压以抵消额外的电压损失,所以一般情况下玩家是不会察觉到因模组化带来的电压损失的。除此之外,接口和电源在内部对接口的处理不但增加了成本,而且增加了产品故障的隐患,因此在严肃的服务器/工作站应用中都会避免使用。6,电源的寿命这里只讨论正常使用的情况,误操作把电源烧掉的,这个没法预计。影响电源寿命的因素很多,跟使用环境,使用的负载和电源的设计、用料和工艺都有关系,但归结起来主要是热量的积累和元件本身的耐温性能。例如,电源内部存不存在热量过于集中而散热达不到要求的地方,存不存在散热的死角,存不存在能量密度过大而元件指标或者布线不够合理的地方。内部温度越高电容等元件出故障的几率就越大,寿命就越短。尤其是那些超静音的电源,刻意降低风扇转速(12cm,800rpm),元件的温度就比风扇转速一般的(12cm,rpm)的产品要高。如果使用了质量不过关,或者是耐温低的电容,那寿命就很堪忧了。现在台产的电容也就Teapo(至宝)等少数品牌在电源上有不错的口碑,剩下的口碑好的电容基本上主要是日系电容。电容爆浆占了电源故障的相当大比例,不少电源(例如Antec曾经的CWT&OEM产品,例如Liberty这一代的Enermax)都因电容问题返修率稍高,口碑受影响。消费者在评价一个电源的时候,电源的做工和用料这些内部的细节是一定要注意的。不光是电容。电感的磁性材料、功率管的品级、散热风扇的轴承等等,以及做工上的一些细节,都对最终的寿命有着较大的影响。另外,现在不少产品用平均无故障时间MTBF来宣传产品寿命稳定。电源的MTBF一般是环境25摄氏度,满负载输出的条件。个别有例外,例如保锐的标定习惯是25摄氏度70%的负载10W小时,而PC&Power&&Cooling的Turbo-Cool系列标法是40度满载20W小时。一般台厂的产品均标称10W小时,Antec习惯标称8W小时,Tt的toughpower标称12W小时,Coolermaster的部分Acbel产品标称40W小时。国内厂商,海尔和联想都在笔记本上大作MTBF的文章,长城也跟着先后给ATX-3008SP和ATX-300SD通过了国内的6.5W和12W小时的MTBF测试。一般来说,故障率低不就代表寿命长么?但问题是,这些国内厂商所宣传的测试的实际方法可不是一台机器跑过了多少万小时。而是数百台机器一起跑一段时间(例如国内标准40天)。这个数字高对消费者来说只代表产品平均质量是否稳定,买到臭虫的几率低,但并不说明长时间的寿命。比较搞笑的是长城的ATX-3008SP才通过6.5W的MTBF测试就开始号称“长寿将军”了,虽然说可能国内的标准和国际上的不同,但6.5W小时的指标可是低于一般水准。更一般的情况,厂商标注的MTBF指标是由各元件(不包括电源的风扇)分别的MTBF数值依照公式计算出来的。MTBF的标注也有相当大的随意性。对一般用户来说,MTBF这一项指标并不需要看重。这个数字更多的是用于大量应用的场合估算头几年的故障率的,而并不是说电源标10W小时就有10W小时的平均寿命,实际寿命一般不会那么长的。也并不能说标40W小时MTBF的就一定比标10W小时的电源要好,这里更多的差异其实是计算过程或者习惯标法的差异。而关于MTBF的进一步讨论,已有另文叙述。7,电源的待机功耗现在国内很多厂商在炒作这个概念,例如“待机功耗低于0.7W”。那么这个待机功耗是指什么呢?首先实际上待机功耗应该是一个整机的概念,而不是电源的概念。整机一接上电源,电源的5Vsb待机电路就开始工作,主板等设备就要从5Vsb取电,虽然很少。电源自身的APFC、控制电路等部分也会有或多或少的功耗消耗。对整机来说,有两个功耗。一个是standby&level的功耗。也是off&mode。对应于ACPI电源管理中的S4或者S5(也就是一般说的休眠)。或者是关机的功耗。数值上应该是一致的。只要电源跟市电不彻底断开,就会产生耗电。另外还有一个sleep&mode的功耗,对应电源管理的S3状态。也就是我们一般说的待机。这个功耗数值比前一个S4/S5状态下的要大。目前对待机功耗提出明确要求的主要是能源之星4.0标准。在能源之星4.0标准里面,对台式机规定的standby功耗&2W,sleep功耗&4W(现在新标准更倾向于调整至5W)。要求还是很高的。在正在进行的能源之星5.0标准的讨论中,我们也可以看到一些更为灵活和细分的规定。能源之星标准之外,也有很多其他的标准。例如欧洲的Eco-Label和GEEA&Label,德国的Blue&Angel,挪威的swan,还有我国的节能标准,都大量集中在待机功耗方面。但这些节能标准总的来说,可以被能源之星4.0和最新的EPS、ATX标准覆盖。上述的标准是针对整个系统的。整个系统定了,例如一台机器的配置定了,那么standby也好,sleep也好,数值就固定了。但如果单独对电源说呢?电源自己是不能“sleep”的,一般用的字眼和第一种一致,standby。那怎么测呢?一般来说电源的standby功耗就不是一个固定的值了。测量的话要在5Vsb加负载的。比如被广泛采用的100ma/250ma/1000ma这三个测试点。待机功耗同样也有效率的问题。因此也会有相应的效率标准。例如今年的EPS12V的要求(同时也是ATX&12V&2.31的建议值):5Vsb&100mA,效率不低于50%;5Vsb&250mA,效率不低于60%;5Vsb&1A以上(含),效率不低于70%。另外,电源待机时候的功耗,实际上指的是一段时间内的平均值。现在也一些电源,宣称待机功耗低于1W,这又是怎么来的呢?一方面是“1W待机”是现在欧洲等地流行的一个对用电设备的环保倡议,不要把电浪费在你不用它的时候。另一方面,现在很多PC电源标这个的时候,都会写上5Vsb输出为0.1A时。这实际上和刚才说过的“5Vsb&100mA,效率不低于50%”是完全等效的表述,相比那种在完全无输出时候&0.7W的情形还更严格一些。不过现在PC机暂时还没有哪个配置在待机时5Vsb只消耗0.1A,所以这个待机功耗低于1W,也并不代表你用了这个电源,待机的时候就会只有1W。但是现在市面上的个别宣称待机功耗低于0.7W的台式机电源(远超能源之星4.0的要求),而对测试的条件语焉不详&,本身就是一种不规范的表现。按数据本身来说,应该是无负载时候的损耗的AC功率,但这种条件下测出来的待机功耗十分片面,实际应用的时候根本不会断开主板让电源继续插着交流电不关。但是这样的字眼却可能让消费者认为买了这个电源,机器待机的时候就几乎不耗电了。这多少有一些是在误导消费者。后记:暂时啰嗦到这里,基本避开了一些技术细节问题,比较水。以后会另发一篇更水的文章谈谈现在电源的市场、生产厂家、贴牌品牌和一些具体的产品。
09:10:31 修改
生命诚可贵,金钱价更高,若为女人故,两者皆可抛~~
OP仔起的还真是早啊,O(∩_∩)O哈哈~
.cn/images/bbs4/logo/.jpg
还要很多!原文地址在二手区&发现好文章&要转过来围观.cn/es/.html!
生命诚可贵,金钱价更高,若为女人故,两者皆可抛~~
我表示要看完有压力。
________________________________________________
(鸣 谢 生 命 中 有 你 参 与,笑 纳 我 的 邀 请。)
Fly away Fly away...
.cn/images/core_computex.png
很好的帖子,所有电器的维修电源的检查是第一步。
您需要登录后才可以发帖
其他登录方式:

我要回帖

更多关于 华硕主板5v电压过高 的文章

 

随机推荐