重量级与轻量级的优点与奔驰b200优缺点是什么么

java 中的锁 -- 偏向锁、轻量级锁、重量级锁
时间: 09:51:14
&&&& 阅读:550
&&&& 评论:
&&&& 收藏:0
标签:&&&&&&&&&&&&&&&&&&&&&&&&&&&理解锁的基础知识
如果想要透彻的理解java锁的来龙去脉,需要先了解以下基础知识。
基础知识之一:锁的类型
锁从宏观上分类,分为悲观锁与乐观锁。
乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,采取在写时先读出当前版本号,然后加锁操作(比较跟上一次的版本号,如果一样则更新),如果失败则要重复读-比较-写的操作。
java中的乐观锁基本都是通过CAS操作实现的,CAS是一种更新的原子操作,比较当前值跟传入值是否一样,一样则更新,否则失败。
悲观锁是就是悲观思想,即认为写多,遇到并发写的可能性高,每次去拿数据的时候都认为别人会修改,所以每次在读写数据的时候都会上锁,这样别人想读写这个数据就会block直到拿到锁。java中的悲观锁就是Synchronized,AQS框架下的锁则是先尝试cas乐观锁去获取锁,获取不到,才会转换为悲观锁,如RetreenLock。
基础知识之二:java线程阻塞的代价
java的线程是映射到操作系统原生线程之上的,如果要阻塞或唤醒一个线程就需要操作系统介入,需要在户态与核心态之间切换,这种切换会消耗大量的系统资源,因为用户态与内核态都有各自专用的内存空间,专用的寄存器等,用户态切换至内核态需要传递给许多变量、参数给内核,内核也需要保护好用户态在切换时的一些寄存器值、变量等,以便内核态调用结束后切换回用户态继续工作。
如果线程状态切换是一个高频操作时,这将会消耗很多CPU处理时间;
如果对于那些需要同步的简单的代码块,获取锁挂起操作消耗的时间比用户代码执行的时间还要长,这种同步策略显然非常糟糕的。
synchronized会导致争用不到锁的线程进入阻塞状态,所以说它是java语言中一个重量级的同步操纵,被称为重量级锁,为了缓解上述性能问题,JVM从1.5开始,引入了轻量锁与偏向锁,默认启用了自旋锁,他们都属于乐观锁。
明确java线程切换的代价,是理解java中各种锁的优缺点的基础之一。
基础知识之三:markword
在介绍java锁之前,先说下什么是markword,markword是java对象数据结构中的一部分,要详细了解java对象的结构可以,这里只做markword的详细介绍,因为对象的markword和java各种类型的锁密切相关;
markword数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,它的最后2bit是锁状态标志位,用来标记当前对象的状态,对象的所处的状态,决定了markword存储的内容,如下表所示:
对象哈希码、对象分代年龄
轻量级锁定
指向锁记录的指针
膨胀(重量级锁定)
执行重量级锁定的指针
空(不需要记录信息)
偏向线程ID、偏向时间戳、对象分代年龄
32位虚拟机在不同状态下markword结构如下图所示:
了解了markword结构,有助于后面了解java锁的加锁解锁过程;
前面提到了java的4种锁,他们分别是重量级锁、自旋锁、轻量级锁和偏向锁,
不同的锁有不同特点,每种锁只有在其特定的场景下,才会有出色的表现,java中没有哪种锁能够在所有情况下都能有出色的效率,引入这么多锁的原因就是为了应对不同的情况;
前面讲到了重量级锁是悲观锁的一种,自旋锁、轻量级锁与偏向锁属于乐观锁,所以现在你就能够大致理解了他们的适用范围,但是具体如何使用这几种锁呢,就要看后面的具体分析他们的特性;
java中的锁
自旋锁原理非常简单,如果持有锁的线程能在很短时间内释放锁资源,那么那些等待竞争锁的线程就不需要做内核态和用户态之间的切换进入阻塞挂起状态,它们只需要等一等(自旋),等持有锁的线程释放锁后即可立即获取锁,这样就避免用户线程和内核的切换的消耗。
但是线程自旋是需要消耗cup的,说白了就是让cup在做无用功,线程不能一直占用cup自旋做无用功,所以需要设定一个自旋等待的最大时间。
如果持有锁的线程执行的时间超过自旋等待的最大时间扔没有释放锁,就会导致其它争用锁的线程在最大等待时间内还是获取不到锁,这时争用线程会停止自旋进入阻塞状态。
自旋锁的优缺点
自旋锁尽可能的减少线程的阻塞,这对于锁的竞争不激烈,且占用锁时间非常短的代码块来说性能能大幅度的提升,因为自旋的消耗会小于线程阻塞挂起操作的消耗!
但是如果锁的竞争激烈,或者持有锁的线程需要长时间占用锁执行同步块,这时候就不适合使用自旋锁了,因为自旋锁在获取锁前一直都是占用cpu做无用功,占着XX不XX,线程自旋的消耗大于线程阻塞挂起操作的消耗,其它需要cup的线程又不能获取到cpu,造成cpu的浪费。
自旋锁时间阈值
自旋锁的目的是为了占着CPU的资源不释放,等到获取到锁立即进行处理。但是如何去选择自旋的执行时间呢?如果自旋执行时间太长,会有大量的线程处于自旋状态占用CPU资源,进而会影响整体系统的性能。因此自旋的周期选的额外重要!
JVM对于自旋周期的选择,jdk1.5这个限度是一定的写死的,在1.6引入了适应性自旋锁,适应性自旋锁意味着自旋的时间不在是固定的了,而是由前一次在同一个锁上的自旋时间以及锁的拥有者的状态来决定,基本认为一个线程上下文切换的时间是最佳的一个时间,同时JVM还针对当前CPU的负荷情况做了较多的优化
如果平均负载小于CPUs则一直自旋
如果有超过(CPUs/2)个线程正在自旋,则后来线程直接阻塞
如果正在自旋的线程发现Owner发生了变化则延迟自旋时间(自旋计数)或进入阻塞
如果CPU处于节电模式则停止自旋
自旋时间的最坏情况是CPU的存储延迟(CPU A存储了一个数据,到CPU B得知这个数据直接的时间差)
自旋时会适当放弃线程优先级之间的差异
自旋锁的开启
JDK1.6中-XX:+UseSpinning开启;
JDK1.7后,去掉此参数,由jvm控制;
重量级锁Synchronized
Synchronized的作用
在JDK1.5之前都是使用synchronized关键字保证同步的,Synchronized的作用相信大家都已经非常熟悉了;
它可以把任意一个非NULL的对象当作锁。
作用于方法时,锁住的是对象的实例(this);
当作用于静态方法时,锁住的是Class实例,又因为Class的相关数据存储在永久带PermGen(jdk1.8则是metaspace),永久带是全局共享的,因此静态方法锁相当于类的一个全局锁,会锁所有调用该方法的线程;
synchronized作用于一个对象实例时,锁住的是所有以该对象为锁的代码块。
Synchronized的实现
实现如下图所示;
它有多个队列,当多个线程一起访问某个对象监视器的时候,对象监视器会将这些线程存储在不同的容器中。
Contention List:竞争队列,所有请求锁的线程首先被放在这个竞争队列中;
Entry List:Contention List中那些有资格成为候选资源的线程被移动到Entry List中;
Wait Set:哪些调用wait方法被阻塞的线程被放置在这里;
OnDeck:任意时刻,最多只有一个线程正在竞争锁资源,该线程被成为OnDeck;
Owner:当前已经获取到所资源的线程被称为Owner;
!Owner:当前释放锁的线程。
JVM每次从队列的尾部取出一个数据用于锁竞争候选者(OnDeck),但是并发情况下,ContentionList会被大量的并发线程进行CAS访问,为了降低对尾部元素的竞争,JVM会将一部分线程移动到EntryList中作为候选竞争线程。Owner线程会在unlock时,将ContentionList中的部分线程迁移到EntryList中,并指定EntryList中的某个线程为OnDeck线程(一般是最先进去的那个线程)。Owner线程并不直接把锁传递给OnDeck线程,而是把锁竞争的权利交给OnDeck,OnDeck需要重新竞争锁。这样虽然牺牲了一些公平性,但是能极大的提升系统的吞吐量,在JVM中,也把这种选择行为称之为“竞争切换”。
OnDeck线程获取到锁资源后会变为Owner线程,而没有得到锁资源的仍然停留在EntryList中。如果Owner线程被wait方法阻塞,则转移到WaitSet队列中,直到某个时刻通过notify或者notifyAll唤醒,会重新进去EntryList中。
处于ContentionList、EntryList、WaitSet中的线程都处于阻塞状态,该阻塞是由操作系统来完成的(Linux内核下采用pthread_mutex_lock内核函数实现的)。
Synchronized是非公平锁。 Synchronized在线程进入ContentionList时,等待的线程会先尝试自旋获取锁,如果获取不到就进入ContentionList,这明显对于已经进入队列的线程是不公平的,还有一个不公平的事情就是自旋获取锁的线程还可能直接抢占OnDeck线程的锁资源。
Java偏向锁(Biased Locking)是Java6引入的一项多线程优化。
偏向锁,顾名思义,它会偏向于第一个访问锁的线程,如果在运行过程中,同步锁只有一个线程访问,不存在多线程争用的情况,则线程是不需要触发同步的,这种情况下,就会给线程加一个偏向锁。
如果在运行过程中,遇到了其他线程抢占锁,则持有偏向锁的线程会被挂起,JVM会消除它身上的偏向锁,将锁恢复到标准的轻量级锁。
它通过消除资源无竞争情况下的同步原语,进一步提高了程序的运行性能。
偏向锁的实现
偏向锁获取过程:
访问Mark Word中偏向锁的标识是否设置成1,锁标志位是否为01,确认为可偏向状态。
如果为可偏向状态,则测试线程ID是否指向当前线程,如果是,进入步骤5,否则进入步骤3。
如果线程ID并未指向当前线程,则通过CAS操作竞争锁。如果竞争成功,则将Mark Word中线程ID设置为当前线程ID,然后执行5;如果竞争失败,执行4。
如果CAS获取偏向锁失败,则表示有竞争。当到达全局安全点(safepoint)时获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码。(撤销偏向锁的时候会导致stop the word)
执行同步代码。
注意:第四步中到达安全点safepoint会导致stop the word,时间很短。
偏向锁的释放:
偏向锁的撤销在上述第四步骤中有提到。偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态,撤销偏向锁后恢复到未锁定(标志位为“01”)或轻量级锁(标志位为“00”)的状态。
偏向锁的适用场景
始终只有一个线程在执行同步块,在它没有执行完释放锁之前,没有其它线程去执行同步块,在锁无竞争的情况下使用,一旦有了竞争就升级为轻量级锁,升级为轻量级锁的时候需要撤销偏向锁,撤销偏向锁的时候会导致stop the word操作;
在有锁的竞争时,偏向锁会多做很多额外操作,尤其是撤销偏向所的时候会导致stw,导致性能下降,这种情况下应当禁用;
通过设置JVM参数 -XX:+PrintGCApplicationStoppedTime 会打出系统停止的时间,添加-XX:+PrintSafepointStatistics -XX:PrintSafepointStatisticsCount=1 这两个参数会打印出详细信息,可以查看到使用偏向锁导致的停顿,时间非常短暂,但是争用严重的情况下,停顿次数也会非常多;
此日志分两段,第一段是时间戳,VM Operation的类型,以及线程概况
total: 安全点里的总线程数
initially_running: 安全点时开始时正在运行状态的线程数
wait_to_block: 在VM Operation开始前需要等待其暂停的线程数
第二行是到达安全点时的各个阶段以及执行操作所花的时间,其中最重要的是vmop
spin: 等待线程响应safepoint号召的时间;
block: 暂停所有线程所用的时间;
sync: 等于 spin+block,这是从开始到进入安全点所耗的时间,可用于判断进入安全点耗时;
cleanup: 清理所用时间;
vmop: 真正执行VM Operation的时间。
可见,那些很多但又很短的安全点,全都是RevokeBias, 高并发的应用会禁用掉偏向锁。
jvm开启/关闭偏向锁
开启偏向锁:-XX:+UseBiasedLocking -XX:BiasedLockingStartupDelay=0
关闭偏向锁:-XX:-UseBiasedLocking
轻量级锁是由偏向所升级来的,偏向锁运行在一个线程进入同步块的情况下,当第二个线程加入锁争用的时候,偏向锁就会升级为轻量级锁;
轻量级锁的加锁过程:
在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。这时候线程堆栈与对象头的状态如图:
  所示。
拷贝对象头中的Mark Word复制到锁记录中;
拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤4,否则执行步骤5。
如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如图所示。
如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。 而当前线程便尝试使用自旋来获取锁,自旋就是为了不让线程阻塞,而采用循环去获取锁的过程。
轻量级锁的释放
释放锁线程视角:由轻量锁切换到重量锁,是发生在轻量锁释放锁的期间,之前在获取锁的时候它拷贝了锁对象头的markword,在释放锁的时候如果它发现在它持有锁的期间有其他线程来尝试获取锁了,并且该线程对markword做了修改,两者比对发现不一致,则切换到重量锁。
因为重量级锁被修改了,所有display mark word和原来的markword不一样了。
怎么补救,就是进入mutex前,compare一下obj的markword状态。确认该markword是否被其他线程持有。
此时如果线程已经释放了markword,那么通过CAS后就可以直接进入线程,无需进入mutex,就这个作用。
尝试获取锁线程视角:如果线程尝试获取锁的时候,轻量锁正被其他线程占有,那么它就会修改markword,修改重量级锁,表示该进入重量锁了。
还有一个注意点:等待轻量锁的线程不会阻塞,它会一直自旋等待锁,并如上所说修改markword。
这就是自旋锁,尝试获取锁的线程,在没有获得锁的时候,不被挂起,而转而去执行一个空循环,即自旋。在若干个自旋后,如果还没有获得锁,则才被挂起,获得锁,则执行代码。
因为自旋会消耗CPU,为了避免无用的自旋(比如获得锁的线程被阻塞住了),一旦锁升级成重量级锁,就不会再恢复到轻量级锁状态。当锁处于这个状态下,其他线程试图获取锁时,都会被阻塞住,当持有锁的线程释放锁之后会唤醒这些线程,被唤醒的线程就会进行新一轮的夺锁之争。
上面几种锁都是JVM自己内部实现,当我们执行synchronized同步块的时候jvm会根据启用的锁和当前线程的争用情况,决定如何执行同步操作;
在所有的锁都启用的情况下线程进入临界区时会先去获取偏向锁,如果已经存在偏向锁了,则会尝试获取轻量级锁,如果以上两种都失败,则启用自旋锁,如果自旋也没有获取到锁,则使用重量级锁,使线程阻塞挂起;
如果线程争用激烈,那么应该禁用偏向锁。
以上介绍的锁不是我们代码中能够控制的,但是借鉴上面的思想,我们可以优化我们自己线程的加锁操作;
减少锁的时间
不需要同步执行的代码,能不放在同步快里面执行就不要放在同步快内,可以让锁尽快释放;
减少锁的粒度
它的思想是将物理上的一个锁,拆成逻辑上的多个锁,增加并行度,从而降低锁竞争。
java中很多数据结构都是采用这种方法提高并发操作的效率:
ConcurrentHashMap
java中的ConcurrentHashMap在jdk1.8之前的版本,使用一个Segment 数组
Segment& K,V &[] segments
Segment继承自ReenTrantLock,所以每个Segment就是个可重入锁,每个Segment 有一个HashEntry& K,V &数组用来存放数据,put操作时,先确定往哪个Segment放数据,只需要锁定这个Segment,执行put,其它的Segment不会被锁定;所以数组中有多少个Segment就允许同一时刻多少个线程存放数据,这样增加了并发能力。
LongAdder 实现思路也类似ConcurrentHashMap,LongAdder有一个根据当前并发状况动态改变的Cell数组,Cell对象里面有一个long类型的value用来存储值;开始没有并发的时候会使用cas来更新值,在并发的情况下,LongAdder会在Cell数组中选定一个Cell加锁,数组有多少个cell,就允许同时有多少线程进行修改,最后将数组中每个Cell中的value相加就是最终的值;
LinkedBlockingQueue
LinkedBlockingQueue也体现了这样的思想,在队列头入队,在队列尾出队,入队和出队使用不同的锁,相对于LinkedBlockingArray只有一个锁效率要高;
大部分情况下我们是要让锁的粒度最小化,锁的粗化则是要增大锁的粒度;
在以下场景下需要粗话锁的粒度:
假如有一个循环,循环内的操作需要加锁,我们应该把锁放到循环外面,否则每次进出循环,都进出一次临界区,效率是非常差的;
使用读写锁
ReentrantReadWriteLock 是一个读写锁,读操作加读锁,可以并发读,写操作使用写锁,只能单线程写;
其它方式等待着大家一起补充
标签:&&&&&&&&&&&&&&&&&&&&&&&&&&&原文地址:http://blog.csdn.net/zqz_zqz/article/details/
&&国之画&&&& &&&&chrome插件&&
版权所有 京ICP备号-2
迷上了代码!JSON 和 XML优缺点的比较
JSON 和 XML优缺点的比较
JSON(Javascript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于Javascript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, Javascript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。
JSON概念很简单,就是服务器直接生成Javascript语句,客户端获取后直接用eval方法来获得这个对象,这样就可以省去解析XML的性损失。
如要从后台载入信息,写成XML,如下:
<contact>
<friend>
<name>Michael</name>
<email></email>
<homepage>http://www.jialing.net</homepage>
</friend>
<friend>
<name>John</name>
<email></email>
<homepage>http://www.john.com</homepage>
</friend>
<friend>
<name>Peggy</name>
<email></email>
<homepage>http://www.peggy.com</homepage>
</friend>
</contact>
而写成JSON:
name:"Michael",
homepage:"http://www.jialing.net"
name:"John",
homepage:"http://www.jobn.com"
name:"Peggy",
homepage:"http://www.peggy.com"
简单的不只是表达上,最重要的是可以丢弃让人晕头转向的DOM解析了。因为只要符合Javascript的声明规范,JavaScrip会自动帮你解析 好 的。Ajax中使用JSON的基本方法是前台载入后台声明Javascript对象的字符串,用eval方法来将它转为实际的对象,最后通过 DHTML更新页面信息。
JSON不仅减少了解析XML解析带来的性能问题和兼容性问题,而且对于Javascript来说非常容易使用,可以方便的通过遍历数组以及访问对象属性 来获取数据,其可读性也不错,基本具备了结构化数据的性质。不得不说是一个很好的办法,而且事实上google maps就没有采用XML传递数据,而是采用了JSON方案。
JSON的另外一个优势是"跨域性",例如你在的网页里使用
JSON的定义
一种轻量级的数据交换格式,具有良好的可读和便于快速编写的特性。业内主流技术为其提供了完整的解决方案(有点类似于正则表达式 ,获得了当今大部分语言的支持),从而可以在不同平台间进行数据交换。JSON采用兼容性很高的文本格式,同时也具备类似于C语言体系的行为。
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML是标准通用标记语言 (SGML) 的子集,非常适合 Web 传输。XML 提供统一的方法来描述和交换独立于应用程序或供应商的结构化数据。
使用XML作为传输格式的优势:
格式统一, 符合标准
容易与其他系统进行远程交互, 数据共享比较方便
XML文件格式文件庞大, 格式复杂, 传输占用带宽
服务器端和客户端都需要花费大量代码来解析XML, 不论服务器端和客户端代码变的异常复杂和不容易维护
客户端不同浏览器之间解析XML的方式不一致, 需要重复编写很多代码
服务器端和客户端解析XML花费资源和时间
那么除了XML格式, 还有没有其他格式, 有一种叫做JSON (JavaScript Object Notation) 的轻量级数据交换格式能够替代XML的工作.
数据格式比较简单, 易于读写, 格式都是压缩的, 占用带宽小
易于解析这种语言, 客户端JavaScript可以简单的通过eval_r()进行JSON数据的读取
支持多种语言, 包括ActionScript, C, C#, ColdFusion, Java, JavaScript, Perl, PHP, Python, Ruby等语言服务器端语言, 便于服务器端的解析
在PHP世界, 已经有PHP-JSON和JSON-PHP出现了, 便于PHP序列化后的程序直接调用. PHP服务器端的对象、数组等能够直接生JSON格式, 便于客户端的访问提取.
因为JSON格式能够直接为服务器端代码使用, 大大简化了服务器端和客户端的代码开发量, 但是完成的任务不变, 且易于维护
没有XML格式这么推广的深入人心和使用广泛, 没有XML那么通用性
JSON格式目前在Web Service中推广还属于初级阶段
JSON 和 XML 优缺点的比较
在可读性方面,JSON和XML的数据可读性基本相同。JSON和XML的可读性可谓不相上下,一边是建议的语法,一边是规范的标签形式,很难分出胜负。
在可扩展性方面,XML天生有很好的扩展性,JSON当然也有,没有什么是XML能扩展,JSON不能的。
在编码难度方面,XML有丰富的编码工具,比如Dom4j、JDom等,JSON也有json.org提供的工具,但是JSON的编码明显比XML容易许多,即使不借助工具也能写出JSON的代码,可是要写好XML就不太容易了。
在解码难度方面,XML的解析得考虑子节点父节点,让人头昏眼花,而JSON的解析难度几乎为0。这一点XML输的真是没话说。
在流行度方面,XML已经被业界广泛的使用,而JSON才刚刚开始,但是在Ajax这个特定的领域,未来的发展一定是XML让位于JSON。到时Ajax应该变成Ajaj(Asynchronous Javascript and JSON)了。
JSON和XML同样拥有丰富的解析手段。
JSON相对于XML来讲,数据的体积小。
JSON与JavaScript的交互更加方便。
JSON对数据的描述性比XML较差。
JSON的速度要远远快于XML。
1.数据交换格式比较之关于XML和JSON:
  XML:extensible markup language,一种类似于HTML的语言,他没有预先定义的标签,使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。具体的可以问Google或百度。相比之JSON这种轻量级的数据交换格式,XML可以称为重量级的了。
  JSON : JavaScript Object Notation 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language , Standard ECMA-262 3rd Edition - December 1999 的一个子集。 JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。
  2.数据交换格式比较之关于轻量级和重量级:
  轻量级和重量级是相对来说的,那么XML相对于JSON的重量级体现在哪呢?我想应该体现在解析上,XML目前设计了两种解析方式:DOM和 SAX;
  DOM是把一个数据交换格式XML看成一个DOM对象,需要把XML文件整个读入内存,这一点上JSON和XML的原理是一样的,但是XML要考虑父节点和子节点,这一点上JSON的解析难度要小很多,因为JSON构建于两种结构:key/value,键值对的集合;值的有序集合,可理解为数组;
  SAX不需要整个读入文档就可以对解析出的内容进行处理,是一种逐步解析的方法。程序也可以随时终止解析。这样,一个大的文档就可以逐步的、一 点一点的展现出来,所以SAX适合于大规模的解析。这一点,JSON目前是做不到得。
  所以,JSON和XML的轻/重量级的区别在于:JSON只提供整体解析方案,而这种方法只在解析较少的数据时才能起到良好的效果;而XML提 供了对大规模数据的逐步解析方案,这种方案很适合于对大量数据的处理。
  3.数据交换格式比较之关于数据格式编码及解析的难度:
  在编码上,虽然XML和JSON都有各自的编码工具,但是JSON的编码要比XML简单,即使不借助工具,也可以写出JSON代码,但要写出好的XML代码就有点困难;与XML一样,JSON也是基于文本的,且它们都使用Unicode编码,且其与数据交换格式XML一样具有可读性。
  主观上来看,JSON更为清晰且冗余更少些。JSON网站提供了对JSON语法的严格描述,只是描述较简短。从总体来看,XML比较适合于标记 文档,而JSON却更适于进行数据交换处理。
  在解析上,在普通的web应用领域,开发者经常为XML的解析伤脑筋,无论是服务器端生成或处理XML,还是客户端用 JavaScript 解析XML,都常常导致复杂的代码,极低的开发效率。
  实际上,对于大多数web应用来说,他们根本不需要复杂的XML来传输数据,XML宣称的扩展性在此就很少具有优势;许多Ajax应用甚至直接返回HTML片段来构建动态web页面。和返回XML并解析它相比,返回HTML片段大大降低了系统的复杂性,但同时缺少了一定的灵活性。同XML或 HTML片段相比,数据交换格式JSON 提供了更好的简单性和灵活性。在web serivice应用中,至少就目前来说XML仍有不可动摇的地位。
Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线)。分布式系统的协调导致了样板模式, 使用Spring Cloud开发人员可以快速地支持实现这些模式的服务和应用程序。他们将在任何分布式...
1.定义介绍 (1).XML定义 扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(documen...
今个去面试,一个人事经理问我xml和json的区别我没答上来感觉很难过,于是就回来后就查阅相关资料写点东西:: 1.定义介绍(1).XML定义扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用...
前言 对于像我这样的初学者,在刚学习网络请求的时候对于XML和JSON时区分不清,不知道什么时候用XML,什么时候用JSON,我在研究过这些问题后,总结写了下面这篇文章,和大家一起探讨学习: 一、首先我们要明白它们二者的定义: (1).XML定义:扩展标记语言 (Exten...
导语 : 鉴于面试被问到过该问题, 故总结一些笔记方便掌握. 1.定义介绍 (1).XML定义扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的...
这几天项目里又用到了环信的推送,虽然之前做过,但是很久不做还是有很多细节没有注意到,所以还是决定从头开始做一遍,把每一个环节都详细记录下来,同样的把每一个坑也记录下来.方便自己以后做的时候忘记哪个流程了可以在看一遍.我很能理解那种遇到问题网上百度一堆类似答案但是并不好使的情...
什么是可能性?很多时候我们走在绝境的尽头,总以为前面已经有无路可走,就主动选择了放弃…… 事业遇到瓶颈时,我们总认为自己已经很努力了,却在努力一段时间后没有结果,就选择了放弃… 婚姻也是如此,两个人相处因为各种原因到最后没能走到一起就觉得生活黯然失色了,就不想坚持了…… 我...
去年伟聪来深圳出差,约我跟梅忠去咖啡厅聚聚。见到伟聪时,他一身正装打扮,手里拿了一个公文包,俨然一个成功人士的形象。只是,他的头发更稀疏了。闲谈间,知道他正在跟林泽、麦琳合作开发手机小游戏,我仿佛又看到了大学时代那个喜欢钻研技术的伟聪。 最早认识伟聪,是在大一军训期间。由于...
有氧、洁净的空气, 闪着星的夜空, 徐徐微风, 虫鸣、鸟叫、狗吠…… 陶瓷杯中温热的决明子茶, 微热的身体微微沁着汗, 等待着沐浴的温水。 脑海忽现: 身在远方的友人, 欢笑、沉默、窃窃私语… 还有偶尔嗔怒; 妈妈那最慈祥的脸庞, 满眼笑意。 手枕着纸,握着笔, 笔在纸上沙...

我要回帖

更多关于 你的优点和缺点是什么 的文章

 

随机推荐