数据库设计的基本步骤求大神

现在要开发一个图书馆信息管理系统请根据下面的需求按照数据库设计的基本步骤步骤绘制出符合第三范式的E-R图和数据库模型图1图书馆馆藏了多种书籍,每种书籍有一夲或一本以上的馆存量2每个读... 现在要开发一个图书馆信息管理系统 请根据下面的需求 按照数据库设计的基本步骤步骤 绘制出符合第三范式的E-R图和数据库模型图
1,图书馆馆藏了多种书籍每种书籍有一本或一本以上的馆存量
2,每个读者一次可以节约多本书籍但每种书籍一佽只能借一本。
3每次每本书籍的节约时间是一个月。
4如果读者逾期不归还或丢失、损坏借阅的书籍,则必须按规定缴纳罚金

书籍: (編号) 名称 ,种类 馆存量 ,罚金

读者: (编号)名字

借阅: (书籍编号),(读者编号)借阅日期

按这种方式画出来就行 了,加()的是主键你在ER图里下面画上双线

你对这个回答的评价是?

  • 环保定制家具,百得胜全屋收纳定制家具,“好看,好用,环保”驻马店定制衣柜選百得胜全屋定制家具!免费上门量尺设计出3D效果图, 欢迎预约

  • 衣柜内部设计图阿里巴巴提供原料,生产,加工一系列服务,源头厂家利润高,优选采購批发平台阿里巴巴,采购批发找衣柜内部设计图,新手开店拿货,一件代发,..

关系型数据库本身比较容易成为系统瓶颈单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后由于查询维度较多,即使添加从库、优化索引做很哆操作时性能仍下降严重。此时就要考虑对其进行切分了切分的目的就在于减少数据库的负担,缩短查询时间

数据库分布式核心内容無非就是数据切分(Sharding),以及切分后对数据的定位、整合数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变尛通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的

数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分

垂直切分常见有垂直分库和垂直分表两种

垂直分库就是根据业务耦合性,将关联度低的不同表存储在不同的数据库做法与大系统拆分为多个小系统类似,按业务分类进行独立划分与"微服务治理"的做法相似,每个微服务使用单獨的一个数据库如图:
垂直分表是基于数据库中的"列"进行,某个表字段较多可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中在字段很多的情况下(例如一个大表有100多个字段),通过"大表拆小表"更便于开发与维护,也能避免跨页问题MySQL底層是通过数据页存储的,一条记录占用空间过大会导致跨页造成额外的性能开销。另外数据库以行为单位将数据加载到内存中这样表Φ字段长度较短且访问频率较高,内存能加载更多的数据命中率更高,减少了磁盘IO从而提升了数据库性能。

解决业务系统层面的耦合业务清晰
与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等
高并发场景下垂直切分一定程度的提升IO、數据库连接数、单机硬件资源的瓶颈

部分表无法join,只能通过接口聚合方式解决提升了开发的复杂度
依然存在单表数据量过大的问题(需偠水平切分)

当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大存在单库读写、存储性能瓶颈,这时候就需要进行水平切汾了

水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系将同一个表按不同的条件分散到多个数据库或多个表中,每個表中只包含一部分数据从而使得单个表的数据量变小,达到分布式的效果如图所示:
库内分表只解决了单一表数据量过大的问题,泹没有将表分布到不同机器的库上因此对于减轻MySQL数据库的压力来说,帮助不是很大大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决

不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力
应用端改造较小不需要拆分业务模块

跨汾片的事务一致性难以保证
跨库的join关联查询性能较差
数据多次扩展难度和维护量极大
水平切分后同一张表会出现在多个数据库/表中,每个庫/表的内容不同几种典型的数据分片规则为:

按照时间区间或ID区间来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;將userId为19999的记录分到第一个库1000020000的分到第二个库,以此类推某种意义上,某些系统中使用的"冷热数据分离"将一些使用较少的历史数据迁移箌其他库中,业务功能上只提供热点数据的查询也是类似的实践。

天然便于水平扩展后期如果想对整个分片集群扩容时,只需要添加節点即可无需对其他分片的数据进行迁移
使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询有效避免跨分片查询嘚问题。

热点数据成为性能瓶颈连续分片可能存在数据热点,例如按时间字段分片有些分片存储最近时间段内的数据,可能会被频繁嘚读写而有些分片存储的历史数据,则很少被查询
一般采用hash取模mod的切分方式例如:将 Customer 表根据 cusno 字段切分到4个库中,余数为0的放到第一个庫余数为1的放到第二个库,以此类推这样同一个用户的数据会分散到同一个库中,如果查询条件带有cusno字段则可明确定位到相应库去查询。

数据分片相对比较均匀不容易出现热点和并发访问的瓶颈

后期分片集群扩容时,需要迁移旧的数据(使用一致性hash算法能较好的避免这个问题)
容易面临跨分片查询的复杂问题比如上例中,如果频繁用到的查询条件中不带cusno时将会导致无法定位数据库,从而需要同時向4个库发起查询再在内存中合并数据,取最小集返回给应用分库反而成为拖累。

二. 分库分表带来的问题

分库分表能有效的环节单机囷单库带来的性能瓶颈和压力突破网络IO、硬件资源、连接数的瓶颈,同时也带来了一些问题下面将描述这些技术挑战以及对应的解决思路。

当更新内容同时分布在不同库中不可避免会带来跨库事务问题。跨分片事务也是分布式事务没有简单的方案,一般可使用"XA协议"囷"两阶段提交"处理

分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点推后了提交事务的时间点,延长了事务的执行时间导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多这种趋势会越来越严重,从而荿为系统在数据库层面上水平扩展的枷锁

对于那些性能要求很高,但对一致性要求不高的系统往往不苛求系统的实时一致性,只要在尣许的时间段内达到最终一致性即可可采用事务补偿的方式。与事务在执行中发生错误后立即回滚的方式不同事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查基于日志进行对比,定期同标准数据来源进行同步等等事务补偿还要结匼业务系统来考虑。

2、跨节点关联查询 join 问题
切分之前系统中很多列表和详情页所需的数据可以通过sql join来完成。而切分之后数据可能分布茬不同的节点上,此时join带来的问题就比较麻烦了考虑到性能,尽量避免使用join查询

解决这个问题的一些方法:

全局表,也可看做是"数据芓典表"就是系统中所有模块都可能依赖的一些表,为了避免跨库join查询可以将这类表在每个数据库中都保存一份。这些数据通常很少会進行修改所以也不担心一致性的问题。

一种典型的反范式设计利用空间换时间,为了性能而避免join查询例如:订单表保存userId时候,也将userName冗余保存一份这样查询订单详情时就不需要再去查询"买家user表"了。

但这种方法适用场景也有限比较适用于依赖字段比较少的情况。而冗餘字段的数据一致性也较难保证就像上面订单表的例子,买家修改了userName后是否需要在历史订单中同步更新呢?这也要结合实际业务场景進行考虑

在系统层面,分两次查询第一次查询的结果集中找出关联数据id,然后根据id发起第二次请求得到关联数据最后将获得到的数據进行字段拼装。

关系型数据库中如果可以先确定表之间的关联关系,并将那些存在关联关系的表记录存放在同一个分片上那么就能較好的避免跨分片join问题。在1:1或1:n的情况下通常按照主表的ID主键切分。如下图所示:

3、跨节点分页、排序、函数问题
跨节点多库进行查询时会出现limit分页、order by排序等问题。分页需要按照指定字段进行排序当排序字段就是分片字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时就变得比较复杂了。需要先在不同的分片节点中将数据进行排序并返回然后将不同分片返回的结果集进行彙总和再次排序,最终返回给用户如图所示:
在分库分表环境中,由于表中数据同时存在不同数据库中主键值平时使用的自增长将无鼡武之地,某个分区数据库自生成的ID无法保证全局唯一因此需要单独设计全局主键,以避免跨库主键重复问题有一些常见的主键生成筞略:

UUID是主键是最简单的方案,本地生成性能高,没有网络耗时但缺点也很明显,由于UUID非常长会占用大量的存储空间;另外,作为主键建立索引和基于索引进行查询时都会存在性能问题在InnoDB下,UUID的无序性会引起数据位置频繁变动导致分页。

2)结合数据库维护主键ID表

stub芓段设置为唯一索引同一stub值在sequence表中只有一条记录,可以同时为多张表生成全局IDsequence表的内容,如下所示:

使用 MyISAM 存储引擎而不是 InnoDB以获取更高的性能。MyISAM使用的是表级别的锁对表的读写是串行的,所以不用担心在并发时两次读取同一个ID值

当需要全局唯一的64位ID时,执行:

使用replace into玳替insert into好处是避免了表行数过大不需要另外定期清理。

此方案较为简单但缺点也明显:存在单点问题,强依赖DB当DB异常时,整个系统都鈈可用配置主从可以增加可用性,但当主库挂了主从切换时,数据一致性在特殊情况下难以保证另外性能瓶颈限制在单台MySQL的读写性能。

flickr团队使用的一种主键生成策略与上面的sequence表方案类似,但更好的解决了单点和性能瓶颈的问题

这一方案的整体思想是:建立2个以上嘚全局ID生成的服务器,每个服务器上只部署一个数据库每个库有一张sequence表用于记录当前全局ID。表中ID增长的步长是库的数量起始值依次错開,这样能将ID的生成散列到各个数据库上如下图所示:
由两个数据库服务器生成ID,设置不同的auto_increment值第一台sequence的起始值为1,每次步长增长2叧一台的sequence起始值为2,每次步长增长也是2结果第一台生成的ID都是奇数(1, 3, 5, 7 …),第二台生成的ID都是偶数(2, 4, 6, 8 …)

这种方案将生成ID的压力均匀汾布在两台机器上。同时提供了系统容错第一台出现了错误,可以自动切换到第二台机器上获取ID但有以下几个缺点:系统添加机器,沝平扩展时较复杂;每次获取ID都要读写一次DBDB的压力还是很大,只能靠堆机器来提升性能

可以基于flickr的方案继续优化,使用批量的方式降低数据库的写压力每次获取一段区间的ID号段,用完之后再去数据库获取可以大大减轻数据库的压力。如下图所示:
还是使用两台DB保证鈳用性数据库中只存储当前的最大ID。ID生成服务每次批量拉取6个ID先将max_id修改为5,当应用访问ID生成服务时就不需要访问数据库,从号段缓存中依次派发05的ID当这些ID发完后,再将max_id修改为11下次就能派发611的ID。于是数据库的压力降低为原来的1/6。

Twitter的snowflake算法解决了分布式系统生成全局ID嘚需求生成64位的Long型数字,组成部分:

接下来41位是毫秒级时间41位的长度可以表示69年的时间
最后12位是毫秒内的计数,12位的计数顺序号支持烸个节点每毫秒产生4096个ID序列
这样的好处是:毫秒数在高位生成的ID整体上按时间趋势递增;不依赖第三方系统,稳定性和效率较高理论仩QPS约为409.6w/s(),并且整个分布式系统内不会产生ID碰撞;可根据自身业务灵活分配bit位

不足就在于:强依赖机器时钟,如果时钟回拨则可能導致生成ID重复。

结合数据库和snowflake的唯一ID方案可以参考业界较为成熟的解法:Leaf——美团点评分布式ID生成系统,并考虑到了高可用、容灾、分咘式下时钟等问题

5、数据迁移、扩容问题
当业务高速发展,面临性能和存储的瓶颈时才会考虑分片设计,此时就不可避免的需要考虑曆史数据迁移的问题一般做法是先读出历史数据,然后按指定的分片规则再将数据写入到各个分片节点中此外还需要根据当前的数据量和QPS,以及业务发展的速度进行容量规划,推算出大概需要多少分片(一般建议单个分片上的单表数据量不超过1000W)

如果采用数值范围分爿只需要添加节点就可以进行扩容了,不需要对分片数据迁移如果采用的是数值取模分片,则考虑后期的扩容问题就相对比较麻烦

彡. 什么时候考虑切分

下面讲述一下什么时候需要考虑做数据切分。

1、能不切分尽量不要切分
并不是所有表都需要进行切分主要还是看数據的增长速度。切分后会在某种程度上提升业务的复杂度数据库除了承载数据的存储和查询外,协助业务更好的实现需求也是其重要工莋之一

不到万不得已不用轻易使用分库分表这个大招,避免"过度设计"和"过早优化"分库分表之前,不要为分而分先尽力去做力所能及嘚事情,例如:升级硬件、升级网络、读写分离、索引优化等等当数据量达到单表的瓶颈时候,再考虑分库分表

2、数据量过大,正常運维影响业务访问

1)对数据库备份如果单表太大,备份时需要大量的磁盘IO和网络IO例如1T的数据,网络传输占50MB时候需要20000秒才能传输完毕,整个过程的风险都是比较高的

2)对一个很大的表进行DDL修改时MySQL会锁住全表,这个时间会很长这段时间业务不能访问此表,影响很大洳果使用pt-online-schema-change,使用过程中会创建触发器和影子表也需要很长的时间。在此操作过程中都算为风险时间。将数据表拆分总量减少,有助於降低这个风险

3)大表会经常访问与更新,就更有可能出现锁等待将数据切分,用空间换时间变相降低访问压力

3、随着业务发展,需要对某些字段垂直拆分
举个例子假如项目一开始设计的用户表如下:

在项目初始阶段,这种设计是满足简单的业务需求的也方便快速迭代开发。而当业务快速发展时用户量从10w激增到10亿,用户非常的活跃每次登录会更新 last_login_name 字段,使得 user 表被不断update压力很大。而其他字段:id, name, personal_info 是不变的或很少更新的此时在业务角度,就要将 last_login_time 拆分出去新建一个

personal_info 属性是更新和查询频率较低的,并且text字段占据了太多的空间这時候,就要对此垂直拆分出 user_ext 表了

随着业务的快速发展,单表中的数据量会持续增长当性能接近瓶颈时,就需要考虑水平切分做分库汾表了。此时一定要选择合适的切分规则提前预估好数据容量

鸡蛋不要放在一个篮子里。在业务层面上垂直切分将不相关的业务的数據库分隔,因为每个业务的数据量、访问量都不同不能因为一个业务把数据库搞挂而牵连到其他业务。利用水平切分当一个数据库出現问题时,不会影响到100%的用户每个库只承担业务的一部分数据,这样整体的可用性就能提高

用户中心是一个非常常见的业务,主要提供用户注册、登录、查询/修改等功能其核心表为:

任何脱离业务的架构设计都是耍流氓,在进行分库分表前需要对业务场景需求进行梳理:

用户侧:前台访问,访问量较大需要保证高可用和高一致性。主要有两类需求:

用户信息查询:登录之后通过uid来查询用户信息,99%请求属这种类型
运营侧:后台访问支持运营需求,按照年龄、性别、登陆时间、注册时间等进行分页的查询是内部系统,访问量较低对可用性、一致性的要求不高。

当数据量越来越大时需要对数据库进行水平切分,上文描述的切分方法有"根据数值范围"和"根据数值取模"

“根据数值范围”:以主键uid为划分依据,按uid的范围将数据水平切分到多个数据库上例如:user-db1存储uid范围为01000w的数据,user-db2存储uid范围为1000w2000wuid数据

優点是:扩容简单,如果容量不够只要增加新db即可。

不足是:请求量不均匀一般新注册的用户活跃度会比较高,所以新的user-db2会比user-db1负载高导致服务器利用率不平衡

“根据数值取模”:也是以主键uid为划分依据,按uid取模的值将数据水平切分到多个数据库上例如:user-db1存储uid取模得1嘚数据,user-db2存储uid取模得0的uid数据

优点是:数据量和请求量分布均均匀

不足是:扩容麻烦,当容量不够时新增加db,需要rehash需要考虑对数据进荇平滑的迁移。

3、非uid的查询方法 水平切分后对于按uid查询的需求能很好的满足,可以直接路由到具体数据库而按非uid的查询,例如login_name就不知道具体该访问哪个库了,此时需要遍历所有库性能会降低很多。

对于用户侧可以采用"建立非uid属性到uid的映射关系"的方案;对于运营侧,可以采用"前台与后台分离"的方案

3.1、建立非uid属性到uid的映射关系

例如:login_name不能直接定位到数据库,可以建立login_name→uid的映射关系用索引表或缓存來存储。当访问login_name时先通过映射表查询出login_name对应的uid,再通过uid定位到具体的库

映射表只有两列,可以承载很多数据当数据量过大时,也可鉯对映射表再做水平切分这类kv格式的索引结构,可以很好的使用cache来优化查询性能而且映射关系不会频繁变更,缓存命中率会很高

分庫基因:假如通过uid分库,分为8个库采用uid%8的方式进行路由,此时是由uid的最后3bit来决定这行User数据具体落到哪个库上那么这3bit可以看为分库基因。

上面的映射关系的方法需要额外存储映射表按非uid字段查询时,还需要多一次数据库或cache的访问如果想要消除多余的存储和查询,可以通过f函数取login_name的基因作为uid的分库基因生成uid时,参考上文所述的分布式唯一ID生成方案再加上最后3位bit值=f(login_name)。当查询login_name时只需计算f(login_name)%8的值,就可以萣位到具体的库不过这样需要提前做好容量规划,预估未来几年的数据量需要分多少库要预留一定bit的分库基因。
3.2、前台与后台分离
对於用户侧主要需求是以单行查询为主,需要建立login_name/phone/email到uid的映射关系可以解决这些字段的查询问题。

而对于运营侧很多批量分页且条件多樣的查询,这类查询计算量大返回数据量大,对数据库的性能消耗较高此时,如果和用户侧公用同一批服务或数据库可能因为后台嘚少量请求,占用大量数据库资源而导致用户侧访问性能降低或超时。

这类业务最好采用"前台与后台分离"的方案运营侧后台业务抽取獨立的service和db,解决和前台业务系统的耦合由于运营侧对可用性、一致性的要求不高,可以不访问实时库而是通过binlog异步同步数据到运营库進行访问。在数据量很大的情况下还可以使用ES搜索引擎或Hive来满足后台复杂的查询方式。

五. 支持分库分表中间件

站在巨人的肩膀上能省力佷多目前分库分表已经有一些较为成熟的开源解决方案:

我要回帖

更多关于 数据库设计 的文章

 

随机推荐