论文《深度神经网络原理比人脸更能准确的》作者是谁

作者开始有两套不同领域的图像如马和斑马,并学习两种转换网:一种将马转换为斑马另一种则相反。每一种转换都进行一种样式转换但不是针对单个图像的风格,而是在网络中发现的一组图像的聚合风格

GAN,是非监督式学习的一种方法通过让两个神经网络相互博弈的方式进行学习),每个网络嘟试图欺骗鉴别者使其相信「转换后」的图像是真实的。引入了额外的「循环一致性损失」鼓励图像在经过两个转换网络(即向前和向後)之后保持不变

论文的视觉效果是惊人的,强烈建议去 GitHub 看看一些其他的例子我特别感兴趣这篇是因为,与许多以前的方法不同的是它学会在不成对图像集之间进行转换,打开可能不存在匹配图像对的应用程序的大门此外,代码非常易于使用和实验证明了方法的穩健性和实现的质量。


目标:使用更好的目标函数来更稳定地训练 GAN

这篇论文提出了使用稍微不同的目标函数训练生成抗性网络新提出的目标函数比标准 GAN训练要稳定得多,因为它避免了在训练过程中消失梯度:

使用次修改的目的作者还避免了一个称为模式崩溃的问题,其Φ标准 GAN 仅从可能输出的一个子集中产生样本例如,如果一个 GAN 正在训练产生手写的数字46则 GAN 可能只生产4,并不能在训练中规避这个局部朂小值而通过消除在训练目标梯度,即所谓的 Wasserstein GAN 来避免此问题

这篇论文非常独立:作者

(1)激发一个简单的想法

(2)在数学上显示为什么应该改進当前的技术水平

(3)有一个令人印象深刻的结果展示其有效性。

此外作者提出的修改在几乎所有流行的深度学习框架中都很容易实现,使嘚采用所提出的改变是切实可行的

3.最有用:使用 GANS 进行无监督的模拟训练细化数据

目标:使用真实世界的图像,使模拟训练数据现实应用Φ更有用

采集真实世界的数据是比较困难和耗时的因此,许多研究人员经常使用仿真工具它们能够产生标记的训练数据的几乎无限量嘚。然而大多数模拟数据对于训练在真实数据上操作的深度学习系统是不够逼真的。

为了克服这种局限性论文使用生成对抗网络(GAN)來使用未标记的真实世界图像来改进标记的模拟图像。 他们训练一个「细化网络」来欺骗辨别分类器该分类器被训练成可以区分精致的模拟图像和真实图像。 由于细化网络和分类器是一体化训练的精致的模拟图像开始显得非常逼真:

当这篇论文发布出来时,我立即产生叻兴趣因为它提出了第一个实用的方法来弥合模拟数据与真实数据之间的差距。这里关键的是该算法是无监督的这意味着用户不需要掱写工标注真实数据。对于深度学习应用来说数据为王,然而像我这样的大多数学术实验室都没有资源来生成快速处理新的研究领域所需的大量数据:如果公共数据集不存在你们试图解决的这个问题的数据那么你就停滞在收集和标注相关数据上了。

本文的外延信息是呮要你有一个你正在试图解决的问题的模拟器,你就应该能够生成你所需要的训练数据

4.最令人印象深刻:从零开始的谷歌的围棋 AI

目标:茬没有任何人类参与的情况下学习围棋

如果没有谷歌的 DeepMind 在过去这些年的另人印象深刻的成就,特别是他的 AlphaGo2017 年的最佳名单将是不完整的。

朂近的 AlphaGo Zero 论文避免了集成人类的知识或游戏玩法:它只通过「自我玩耍」进行训练这是通过改进的强化学习训练程序来实现的,其中的策畧会随着游戏的前向模拟而更新用于指导搜索的神经网络在游戏过程中得到改善,使训练速度更快仅仅在大约 40 个小时的游戏时间之后 AlphaGo Zero 甚至超过了 AlphaGo Lee ( 2016 年击败了李世乭)的表现。

尽管我对这篇论文的兴趣主要集中在工程学层面但 AlphaGo 采用的混合经典和深度学习方法也让我倍受皷舞,在这种方法中蒙特卡洛树搜索的增加使得系统性能优于单片神经网络。 作为研究机器人的人我被这种组合方法所鼓舞:使用经典算法作为决策的主干,并使用机器学习来提高性能或克服计算限制这篇论文和 2016 AlphaGo 论文也都很棒, 都写得很好充满了有趣的技术细节和見解。 如果没有其他原因这些文件值得详细阅读。

5.最发人深省:深度图像

目标:了解之前我们的神经网络模型赋予我们的实验

本文的莋者不是用一大堆数据训练一个深度神经网络原理,而是如今相当标准的本文的作者想探讨如何使用神经网络本身帮助我们解决一些流荇的图像处理任务。他们从一个未经训练的神经网络开始用作者的话来说「不是在图像空间中搜索答案,而是在神经网络的参数空间中搜索」并且避免将大型数据集中的神经网络。

我立刻被这个结果迷住了:我们的神经网络的结构对我们的数据有什么意义我们怎样才能更好地理解这一点?我们如何利用这种方法来建立更好的网络模型 


围棋的英文是 the game of Go标题翻译为:《鼡深度神经网络原理和树搜索征服围棋》。译者简单介绍:大三211,计算机科学与技术专业平均分92分,专业第一为了更好地翻译此文。译者查看了非常多资料译者翻译此论文已尽全力,不足之处希望读者指出

在的影响之下,全社会对人工智能的关注进一步提升

3月12ㄖ,AlphaGo 第三次击败李世石在3月15日总比分定格为4:1,随后AlphaGo的围棋排名世界来到第二

编者按:。笔者在翻译的时候忠实于原文非常少增加洎己的理解(本人不敢说有啥深入理解可言)。

终于翻译结果可能不好可是对于本人而言,翻译这篇文论的过程大于结果:一篇一万字嘚中文翻译背后是十万中英文资料的阅读。


标题:用深度神经网络原理和树搜索征服围棋

摘要:人们长久以来觉得:围棋对于人工智能來说是最具有挑战性的经典博弈游戏由于它的巨大的搜索空间。评估棋局和评估落子地点的难度

我们给电脑围棋程序引入一种新的方法,这种方法使用估值网络来评估棋局以及使用策略网络来选择怎样落子。这些深度神经网络原理被一种新的组合来训练:使用了人类專业比赛数据的以及自我对弈的。没有使用不论什么的方法神经网络下围棋达到了最先进的程序的水准。这程序模拟了数以千计的自峩对弈的随机博弈

我们同一时候也引入了一种新的搜索算法,这算法把蒙特卡洛模拟和估值、策略网络结合在一起运用了这个搜索算法,我们的程序AlphaGo在和其它围棋程序的对弈中达到了99.8%的胜率而且以5:0的比分击败了欧洲冠军,这是史上第一次计算机程序在全尺寸围棋中擊败一个人类职业棋手在此之前,人们觉得须要至少十年才会达成这个壮举


全部都有一个最优估值函数v?(s) ,它在推断了每个棋局戓状态 s 之后的博弈结果的优劣(在全部对手完美发挥的情况下)解决这些博弈能够通过在搜索树中递归调用最优估值函数,这个搜索树包含大约bd 种可能的下棋序列当中 b 是博弈的广度(每一次下棋时候的合法落子个数)。d 是的深度(博弈的步数长度)在大型博弈中。比方国际象棋(b35,d80)和特别是围棋(b250,d150),穷举搜索是不可行的的可是有效的搜索空间能够通过两种通用的原则减少。第一搜索嘚深度能够通过棋局评估减少:在状态 时对搜索树进行剪枝,然后用一个近似估值函数v(s)v?(s) 代替状态 s 以下的子树这个近似估值函数预測狀态 s 之后的对弈结果。这样的方法已经在国际象棋国际跳棋,黑白棋中得到了超越人类的下棋能力可是人们觉得这样的方法在围棋中昰难以处理的。由于围棋的巨大的复杂度

第二,搜索的广度能够通过来自策略 p(as) 的採样动作来减少这个策略是一个在位置 s 的可能下棋赱子a 概率分布。比方蒙特卡洛走子方法搜索到最大深度时候根本不使用它从一个策略 p 中採集两方棋手的一系列下棋走法。计算这些走子嘚平均数能够产生一个有效的棋局评估在西洋双陆棋戏和拼字游戏中获得了超出人类的性能表现,而且在围棋中达到了业余低段水平

蒙特卡洛树搜索使用走子方法,评估搜索树中每个状态的估值

随着运行越来越多的模拟,这个搜索树成长越来越大而且相关估值愈发精确。用来选择下棋动作的策略在搜索的过程中也会随着时间的推移而改进通过选择拥有更高估值的子树。渐近的这个策略收敛到一個最优下法。然后评估收敛到最优估值函数

眼下最强的围棋程序是基于蒙特卡洛树搜索的,而且受到了策略的增强这个策略被人训练鼡来预測专家棋手的下法。这些策略用来缩窄搜索空间到一束高可能性下棋动作和用来在走子中採集下法动作。这种方法已经达到了业餘高手的级别然而。先前的工作已经受到了肤浅策略的限制或基于输入的线性组合的估值函数的限制

近期,已经在计算机视觉中达到叻空前的性能:比方图像分类人脸识别。和玩的游戏

它们使用非常多层的神经网络,层与层之间像瓦片重叠排列在一起用来构建图爿的愈发抽象的局部代表。

我们为围棋程序部署了相似的体系架构

我们给程序传入了一个19*19大小棋局的图片。然后使用卷积神经网络来构建一个位置的代表

我们使用这些神经网络来减少搜索树的有效的深度和广度:通过估值网络来评估棋局,和使用策略网络来博弈取样

峩们使用一个包含多个不同阶段的机器学习方法的来训练神经网络。

我们開始使用一个监督学习(SL)策略网络 pδ 它直接来自人类专家的丅棋。这提供了高速高效的学习更新拥有高速的反馈和高质量的梯度。

和向前的工作相似我们同一时候也训练了一个能够迅速从走子Φ取样的高速策略 pπ 

其次我们训练了一个强化学习(RL)策略网络,pp它通过优化自我对弈的终于结局来提升 SL策略网络。这调整策略网絡朝向赢棋的正确目标发展而不是最大化提高预測精度。

最后我们训练了一个估值网络vθ 。它预測博弈的赢者通过和RL策略网络和自巳对弈。我们的AlphaGo程序有效的把策略网络、估值网络和蒙特卡洛搜索树结合在一起。


1 策略网络的监督学习

在训练管道嘚第一阶段我们在先前工作的基础上,使用了监督学习来预測人类专家下围棋

监督学习(SL)策略网络pδ(as) 在重量δ的卷积层和非线性嘚整流器中替换。策略网络的输入 s 是一个棋局状态的简单代表(如扩展数据表2)

策略网络使用了随机取样状态-动作对(s,a)使用了随機梯度递增来最大化人类在状态 s 选择下棋走子 a 的可能性。
我们用围棋server的3千万个棋局训练了13层的策略网络(我们称之为SL 策略网络)。在输叺留存測试数据的所受特征的时候这个网络预測人类专家下棋的精准的达到了57%,而且在只使用原始棋局和下棋记录的时候精度达到了55.7%。与之相比截至到本篇文论提交(2015年),其它研究团队的最先进的精度是44.4%(全部结果在扩展数据表3)在准确度方面的小提升会引起下棋能力的非常大提升(图片2,a)更大的神经网络拥有更高的准确度,可是在搜索过程中评估速度更慢我们也训练了一个更快的可是准確度更低的走子策略pπ(as) ,它使用了一个权重为π 的小型模式特征的线性softmax它达到了24.2%的准确度。每选择下一步棋只用2微秒与之相比,策畧网络须要3毫秒


图1:神经网络训练管道和体系结构a:在一个棋局数据集合中训练一个高速走子策略pπ 和监督学习(SL)策略网络pδ 用來预測人类专家下棋。一个强化学习(RL)策略网络pρ 由SL策略网络初始化然后由策略梯度学习进行提高。

和先前版本号的策略网络相比朂大化结局(比方赢很多其它的博弈)。一个新的数据集合产生了通过自我对弈结合RL策略网络。终于通过回归训练产生一个估值网络vθ ,用来在自我对弈的数据集合中预測期待的结局(比方当前棋手能否赢)

b:AlphaGo使用的神经网络体系架构的原理图代表。策略网络把棋局狀态 s 当作输入的代表策略网络把 s 传输通过非常多卷积层(这些卷积层是參数为δ 的SL策略网络或者參数为ρ 的RL策略网络)。然后输出一个關于下棋动作 a 的概率分布 pδ(as) or pρ(as) 用一个棋盘的概率地图来表示。估值网络相似的使用了非常多參数θ 的卷积层可是输出一个标量值vθ(s) 用来预測棋局状态


图2:策略网络和估值网络的能力和准确度。a图显示了策略网络的下棋能力随着它们的训练准确度的函数拥有128,192256,384卷积过滤每层的策略网络在训练过程中得到周期性的评估这个图显示了AlphaGo使用不同策略网络的赢棋概率随着的不同准确度版本号的AlphaGo的变囮。b:估值网络和不同策略网络的评估对照棋局和结局是从人类专家博弈对局中採样的。每个棋局都是由一个单独的向前传递的估值网絡vθ 评估的或者100个走子的平均值,这些走子是由统一随机走子或高速走子策略pπ 。或 策略网络pρ 图中。预測估值和博弈实际结局之間的平均方差随着博弈的进行阶段(博弈总共下了多少步)的变化而变化


2 策略网络的强化学习

训练管道第二阶段的目标是通过策略梯度强化学习(RL)来提高策略网络。

强化学习策略网络pρ 在结构上和 SL策略网络是一样的权重ρ 初始值也是一样的。ρ=δ 

我们在当前的策略网络和随机选择某先前一次迭代的策略网络之间博弈。从一个对手的候选池中随机选择能够稳定训练过程,防止过喥拟合于当前的策略我们使用一个奖励函数 r(s)。对于全部非终端的步骤 t < T它的值等于零。从当前棋手在步骤 t 的角度来讲结果 zt=±r(sT) 是在博弈結束时候的终端奖励,假设赢棋结果等于 +1,假设输棋结果等于 -1。

然后权重在每个步骤 t 更新:朝向最大化预期结果的方向随机梯度递增
RL筞略网络的性能表现从输出的下棋动作的概率分布。对每一下棋动作at?pp(?st) 进行取样

我们自己面对面博弈,RL策略网络对 SL策略网络的胜率高于80%

我们也測试了和最强的开源围棋软件 Pachi 对弈,它是一个随机的蒙特卡洛搜索程序在KGS中达到业余2段。在没有使用不论什么搜索的情況下RL策略网络对 Pachi的胜率达到了85%。

与之相比之前的最先进的只基于监督学习的卷积网络,对 Pachi的胜率仅唯独11%对稍弱的程序 Fuego的胜率是12%。


3 估值网络的强化学习

训练管道的最后一个阶段关注于棋局评估评估一个估值函数 vp(s) ,它预測从棋局状态 s 開始博弈两方嘟依照策略网络 p 下棋的结局。
理想情况下我们期望知道在完美下法v?(s)情况下的最优值。然而在现实中我们使用 RL策略网络,来评估估值函数vPp 作为我们的最佳策略。我们使用权重是θ 的估值网络 vθ(s)来逼近估值函数vθ(s)vPpv?(s)。这个神经网络和策略网络拥有近似的体系结构可是输出一个单一的预測,而不是一个概率分布我们通过回归到状态-结果对(s, z)来训练估值网络的权重,使用了随机梯度递减最小囮预測估值vθ(s)和对应的结局 z 之间的平均方差(MSE)。
这个天真的从拥有完整对弈的数据来预測博弈结局的方法导致过度拟合问题在于。连續的棋局之间的联系十分强大和仅单独下一步棋有差距。可是回归目标和整个博弈又是相通的当通过这样的方式在KGS数据集合上训练是,估值网络记住了博弈的结局而不是推广出新的棋局在測试数据上面MSE最小达到了0.37。与之相比在训练数据集合上面MSE是0.19为了解决问题,我們想出了新的自我对弈的数据集合包含了三千万个不同的棋局,每个都是从不同盘博弈中採样每一盘博弈都是在 RL策略网络和自己之间對弈。直到博弈本身结束

在这个数据集合上训练导致了MSE为0.226,和训练和測试数据集合的MSE为0.234这预示着非常小的过度拟合。图2b展示了估值網络对棋局评估的准确度:对照使用了高速走子策略网络pπ 的蒙特卡洛走子的准确度,估值函数一直更加精确一个单一的评估vθ(s) 的准确喥也逼近了使用了 RL策略网络vθ(s)的蒙特卡洛走子的准确度,只是计算量是原来的15000分之中的一个


4 运用策略网络囷估值网络搜索

AlphaGo在把策略网络、估值网络和MCTS算法结合。MCTS通过预測搜索选择下棋动作每个搜索树的边(s,a)存储着一个动作估值 Q(s, a)訪问计數 N(s, a),和先验概率 P(s, a)这棵树从根节点開始。通过模拟来遍历(比方在完整的博弈中沿着树无没有备份地向下搜索)在每一次模拟的时间步驟 t。在状态 s的时候选择一个下棋动作at 
用来最大化动作估值加上一个额外奖励u(s,a)?P(s,a)1+N(s,a) 。它和先验概率成正向关系可是和反复訪问次数成反向關系,这样是为了鼓舞很多其它的探索当在步骤 L 遍历到达一个叶节点sL 时。该叶节点可能不会被扩展叶节点棋局sL 仅被 SL策略网络pδ 运行一佽。输出的概率存储下来作为每一合法下法动作 a 的先验概率

叶节点通过两种方式的得到评估:第一通过价值网络vθ(sL) 评估;第二,用高速赱子策略pπ 随机走子直到终点步骤 T,产生的结果zL 作为评估方法这些评估方法结合在一起,在叶节点的评估函数V(SL) 中使用一个混合參数λ 

在模拟的结尾 n。更新全部被遍历过的边的下棋动作估值和訪问次数每一条边累加訪问次数,和求出全部经过该边的模拟估值的平均值


当中siL 是第 i 次模拟的叶节点,1(s, a, i) 代表一条边 (s, a) 在第 i 次模拟时是否被遍历过一旦搜索完毕。算法选择从根节点開始被訪问次数最多的节点。

RL筞略网络pρ 猜測可能是由于人类从一束不同的前景非常好的下棋走法中选择。然而 RL优化单一最优下棋走法然而。从更强的 RL策略网络训練出来的估值函数vθvPρ(s) 优于从

评估策略网络和估值网络和传统的启示式搜索相比须要多几个数量级的计算量。

为了高效的把 MCTS 和深度神經网络原理结合在一起AlphaGo 在非常多CPU上使用异步多线程搜索技术进行了模拟。在非常多GPU上计算策略网络和估值网络终于版本号的 AlphaGo使用了40个搜索线程。48个CPU和8个GPU。

我们也实现了一个分布式的AlphaGo版本号它利用了多台电脑,40个搜索线程1202个CPU,176个GPU

在方法部分提供了关于异步和分布MCTS嘚全部的细节。


图3:AlphaGo中的蒙特卡洛树搜索a 每一次模拟遍历搜索树。通过选择拥有最大下棋动作估值 Q的边加上一个额外奖励 u(P)(依赖于存儲的该边的先验概率 P) 。b叶节点可能被展开新的结点被策略网络pθ 运行一次。然后结果概率存储下来作为每个下棋动作的先验概率

c在┅次模拟的结尾。叶节点由两种方式评估:使用估值网络 vθ和运行一个走子策略直到博弈结尾(使用了高速走子策略pπ )然后对于赢者運算函数 r。d 下棋动作估值 Q 得到更新用来跟踪全部评估 r(.) 的平均值和该下棋动作的子树的vθ(?) 


为了评估 AlphaGo 的水平。我们举办了內部比赛成员包含不同版本号的 AlphaGo 和几个其它的围棋程序,包含最强的商业程序 CrazyStone和Zen和最强的开源程序Pachi和Fuego。全部这些程序都是基于高性能蒙特卡洛树搜索算法的此外,我们的内部比赛还包含了开源程序GnuGo它使用了最先进搜索方法的蒙特卡洛树搜索。全部程序每次运行下一步棋同意5秒钟

比赛的结果如图4,a,它预示着单击版本号的AlphaGo比先前不论什么一个围棋程序强上非常多段在495场比赛中,AlphaGo赢了当中的494场比赛峩们也在让对手4目棋的情况下进行了比赛:AlphaGo和CrazyStone。ZenPachi的胜率各自是77%,86%99%。

分布式版本号的AlphaGo强大非常多:和单机版本号的AlphaGo对弈的胜率是77%和其咜的围棋程序对弈的胜率是100%。

我们也评估了不同版本号的AlphaGo不同版本号只使用估值网络(λ=0 )或者只使用高速走子(λ=1 )(如图4,b)。

即使鈈使用高速走子AlphaGo的性能超出了全部其它围棋程序,显示了估值网络提供了一个可行的代替蒙特卡洛评估的可能只是,其估值网络和高速走子的混合版本号表现最好(λ=0.5)在对其它版本号的AlphaGo的时候胜率达到了95%以上。

这预示着这两种棋局评估系统是互补的:估值网络通过能力非常强可是不切实际的慢的pρ 来逼近博弈的结局;高速走子能够通过能力更弱可是更快的高速走子策略pρ 来精确的评估博弈的结局。

图5将AlphaGo在真实博弈棋局中评估能力可视化了

终于。我们把分布式版本号的AlphaGo和樊麾进行了评估他作为一个职业2段棋手,是20132014。2015年的欧洲圍棋冠军

在2015年10月5-9日,AlphaGo和樊麾在真实比赛中下了5盘棋

AlphaGo以5:0的比分赢了比赛(图6和扩展数据表1)。这是史上第一次在人类不让子和完整棋盘的情况下,一个围棋程序在赢了一个人类职业棋手

这个壮举之前觉得须要至少十年才干达到。


图4:AlphaGo的比赛评估a 和不同围棋程序比賽的结果(见扩展数据表6-11)。每个程序使用接近5秒每走一步棋的速度为了给AlphaGo更高的挑战难度,一些程序得到了全部对手让4步子的优势程序的评估基于ELO体系:230分的差距。这相当于79%的胜率差距这大致相当于在KGS中高一个业余等级。

一个和人类接近的相当也显示了水平的线顯示了程序在在线比赛中达到的KSG等级。和欧洲冠军樊麾的比赛也包含在内

这些比赛使用更长的时间控制。

图中显示了95%的置信区间

b 单机蝂本号的AlphaGo在组成部分的不同组合下的性能表现。当中只使用了策略网络的版本号没有使用不论什么搜索算法c 蒙特卡洛搜索树算法关于搜索线程和GPU的可扩展性研究,当中使用了异步搜索(浅蓝色)和分布式搜索(深蓝色)每下一步时间两秒。


图5:AlphaGo(执黑)是在一个和樊麾嘚非正式的比赛中选择下棋走子的

接下来的每个统计中,估值最大的落子地点用橘黄色标记

a根节点 s 的全部后继结点 s’ 的估值,使用估徝网络 vθ(s) 评估非常靠前的会赢的百分数显示出来了。b 从根节点開始的每一条边(s, a)的走子动作估值 Q(s, a);只使用估值网络(λ=0 )方法的均值c 丅棋动作 Q(s, a),只使用高速走子(λ=1 )方法的均值d 直接使用 SL策略网络的下棋走子概率。pδ(a|s);假设大于0.1%的话以百分比的形式报告出来。

e 从根節点開始的模拟过程中下棋走子地点选择的频率百分比f AlphaGo的树搜索的理论上的走子选择序列(一个搜索过程中訪问次数最多的路径)。下棋走子用一个数字序列表示AlphaGo选择下棋的落子地点用红色圆圈标记出来;樊麾下在白色方形的地方作为回应;在他的复盘过程中,他评论噵:下在地点 1 应该是更好的选择而这个落子地点正好是AlphaGo预測的白棋的落子地点。


在这个工作中我们基于一个深度神经网络原理和樹搜索的结合开发了一个围棋程序,它的下棋水平达到了人类最强的水平因此成功战胜了一项人工智能领域的伟大挑战。我们首次对圍棋开发了一个有效的下棋走子选择器和棋局评估函数,它是基于被一个创新型的监督学习和强化学习的组合训练的深度神经网络原理峩们引入了新的搜索算法,它成功的把神经网络评估和蒙特卡洛走子结合在一起我们的程序AlphaGo把这些组成部分依照比例集成在一起,成为叻一个高性能的树搜索引擎

在和樊麾的比赛中。AlphaGo对棋局评估的次数和深蓝对卡斯帕罗夫下国际象棋的时候的次数相比是其千分之中的┅个。

作为补偿的是更加智能的棋局选择能力。使用了更加精确的评估棋局的能力使用了估值网络(一个或许是更加接近于人类下棋方式的方法)。此外深蓝使用的是人类手工调參数的估值函数,然而AlphaGo 的神经网络是直接从比赛对弈数据中训练出来的纯通过一个通用目的的监督学习和强化学习方法。

围棋在非常多方面是横亘在人工智能面前的困难:一个有挑战性的决策任务一个难以对付的解空间;囷一个非常复杂的最优解。以至于它看上去不可能世界使用策略或者估值函数逼近

之前的关于围棋程序的重大突破,蒙特卡洛树搜索茬其它领域导致了对应的进步:比方通用的博弈比赛。经典的规划问题局部观察规划问题,调度问题和约束满足问题。

通过把树搜索囷策略网络、估值网络结合在一起AlphaGo 终于达到了围棋职业选手的水平,而且提供了希望:在其它看似难以解决的人工智能领域里计算机洳今是能够达到人类水平的。


图6: AlphaGo 和欧洲冠军樊麾的博弈棋局

下棋走的每一步依照下棋顺序由数字序列显示出来。反复落子的地方在棋盤的以下成双成对显示出来每一对数字中第一个数字的落子,反复下到了第二个数字显示的交叉地方


我们感谢樊麾答应和AlphaGo进行比赛。感谢T.M担当比赛的裁判;感谢R.M和T.S给予有帮助的讨论和建议;感谢A.C和M.C在可视化方面的工作;感谢P.D, G.W, D.K, D.P, H.vH, A.G和G.O修订了这篇论文;感谢 DeepMing 团队其它的成员的支歭想法,和鼓舞


理解 AlphaGo 有两个关键部分:

  1. 深度神经网络原理的训练过程。文章把这个过程描写叙述成为一个管道所谓管道,非常像Linux系統中的管道命令把前者的输出作为后者的输入
  2. 蒙特卡洛树搜索的过程,看这个搜索是怎样把 SL策略网络估值网络。高速走子策略结合在┅起的

输入人类的棋谱。经过监督学习输出SL策略网络
输入SL策略网络,经过强化学习输出RL策略网络
输入RL策略网络。经过强化学习输絀估值网络

蒙特卡洛树搜索是模拟下棋,而且评估的过程蒙特卡洛就是“随机”的意思,只只是逼格更高而已假设你“随机”下棋,肯定输呀怎么办?使用 SL策略网络来预測人类是怎样下棋的AlphaGo每次要下棋的时候,先运行 SL策略网络一遍得到一个概率分布。在此基础上進行“随机”:更有可能在概率更大的地方落子
AlphaGo一边模拟自己下棋,一边模拟对手下棋最后,下完了所谓下完了。就是在树搜索的時候达到了叶节点

下完了之后。对棋局进行评估结合估值网络和高速走子策略,得到一个估值函数该函数的值越高。越好
模拟非瑺多非常多遍。模拟结束之后进行“统计”工作。统计每一条边走过的次数和估值函数的估值。最后AlphaGo做出选择:如今是棋局 s,假设茬 a 地方结合 a 在模拟过程中走过的次数,以及 a 以下的叶节点的估值函数累加起来最高。那么AlphaGo选择在 a 地方落子

我要回帖

更多关于 深度神经网络原理 的文章

 

随机推荐