AI存算一体机按需配置是人工智能需要什么配置的电脑?

亿铸科技以全数字的技术思路将ReRAM “存算一体”应用于AI大算力领域,它能否打破传统冯诺依曼架构下的存算墙、能耗墙和编译墙? 在我国西部,一座座数据中心正在拔地而起,为全国输送着源源不断的算力。但数据计算往往伴随着巨大的功耗,因此发展数据中心和实现“双碳”目标之间存在着巨大的矛盾。在“碳中和”已经成为全球共识的当下,国家在近段时间推出的“东数西算”工程受到了社会各界广泛关注。“东数西算”通过在全国布局8个算力枢纽,引导大型、超大型数据中心向枢纽内集聚,形成数据中心集群,以此优化资源配置,提升资源使用效率。虽然“东数西算”为优化数据中心的供能结构提供了政策助力,但并不能从技术层面解决既有算力能效比和算力能耗绿色发展需求之间的根本矛盾。计算芯片的功耗向来是芯片制造工艺演进中备受关注的指标之一。在后摩尔时代,单纯通过工艺制程的提升降低芯片功耗的路径也日渐捉襟见肘,已经接近摩尔定律的物理极限。此外,巨大的生态依赖性也牵扯着各个AI应用场景的发展进程。但随着基于ReRAM的全数字存算一体架构大算力、低功耗、易部署芯片的研发和产业化,这一难题似乎有了新的解决思路。存算一体打破“存算墙”和“能耗墙”在芯片产业发展的过程中有两座绕不开的大山:“存算墙”以及“能耗墙”。1946年,美籍匈牙利科学家冯·诺依曼(J.Von Neumann)提出了著名的存储程序原理,此后70余年,现代计算机发展到第五代,存储器经历磁存储,光存储等一路发展至半导体存储,而冯·诺依曼结构是当下最主流的计算机结构的地位却从未变过。但随着时代的飞速进展,存算分离结构的天生缺陷使得冯·诺依曼结构的电子计算机似乎已经难以满足数据处理更海量、更快速、更低耗的需求。为什么说冯·诺依曼结构存在天生的缺陷?这是因为在该结构设计中,CPU访问存储器的速度决定了系统运行的速度,这也使得系统对存储器产生了绝对的依赖。随着半导体技术快速发展,CPU的运算速度已经远远超过了访存速度,前者通常是后者的200倍以上,CPU在执行指令间不得不等待数据。CPU和内存之间的数据传输带宽,以及传输过程中每一层代码的手动优化,都成为限制计算机性能进一步提高的瓶颈,带来“存算墙”问题。而AI计算在处理大量数据的过程中,这些数据需要在计算和存储单元中进行频繁的移动,移动受制于关键部件的技术瓶颈,也带来了芯片面积增加、接口IP成本增加、功耗增加等一系列问题,也就产生了“能耗墙”问题。尤其当工艺制程的发展开始进入后摩尔时代,业界对于解决这一问题的全新的技术路线显得更加渴求和迫切——于是,“存算一体”便被提了出来。这是一种将存储和计算有机结合的非冯诺依曼架构,理论上计算可以直接在存储器中进行,这样既打破了系统对于存储器的绝对依赖,还能够极大地消除数据搬移带来的开销,彻底消除“存算墙”以及“能耗墙”的问题。新型存储ReRAM,实现存算一体的最优解既然理论上是可行的,那么实际又该如何实现存算一体呢?大体上看,市面上大概有三个流派的方案实现存算融合:一是利用先进封装技术把计算逻辑芯片和存储器(如DRAM)封装到一起,以高IO密度来实现高内存带宽以及较低的访问开销,或采用更先进的制程工艺,比如2.5D、3D的封装以及高位宽的HBM接口等,实现近内存计算;二是在传统DRAM、SRAM、NOR Flash、NAND Flash中实现存内计算;三是利用新型存储元件实现存算一体。但可惜的是,大部分技术还是无法真正地解决“储算墙”和“能耗墙”的问题。随着亿铸科技推出基于ReRAM研发的“全数字存算一体”技术,上述问题似乎有了解法。该芯片材料特性以及生产工艺相对成熟,可突破性能不足、使用场景受限、制造成本过高等多种问题,更易于实现大范围普及和商业化应用。不仅如此,基于忆阻器(ReRAM)技术的计算单元可以通过阻值器件的存储记忆特性,利用基础物理定律和原理完成海量的AI计算;通过存算一体的架构,可以节省把数据从内存单元逐层搬迁到计算单元的环节,从而得以节省因为数据搬迁而产生的大量衍生成本,这此类方式也符合国家对于碳中和、碳达峰的技术发展路线,改变了传统AI运算数据量需要带来巨大能耗的现状。从年增长率、速度、可扩展性、与CMOS的兼容性、IEEE认定的新型存储介质要素、实际商业化进程等方面来看,ReRAM在与诸如相变存储器、MRAM等其它新兴存储技术相比中,表现都是非常优异的。ReRAM的强大优势吸引了大量厂商的争相研究和应用落地,包括台积电、联电、格罗方德、中芯国际以及昕原半导体等均已建立了可量产的商业化ReRAM产线,其中昕原半导体的国内第一条28nm制程后道产线,已可以量产商用出货。亿铸ReRAM全数字存算一体技术:具备大算力、低功耗、易部署的三大优势在ReRAM存算一体赛道涌入大量玩家的环境下,谁又能拿到突围的先发优势呢?当下,ReRAM存算一体这个赛道有两种解决方案,一种是模拟的,一种是全数字的,模拟方案天然吻合信号量的物理特性,但却存在一定的精度受限的问题,另外它还会产生模拟和数字之间频繁转换的衍生成本。作为业界首家采用全数字路线耕耘于基于ReRAM的存算一体大算力芯片的公司,亿铸科技采用的是另一种:全数字解决方案。基于ReRAM研发“全数字存算一体”的算力芯片,可以最大范围提高产品精度,解决以前存算一体技术中模拟芯片低精度问题。此外,该方案还节省了模拟技术的衍生成本,形成了一套既能保证精度同时又能最优化面积和功耗的解决方案。基于ReRAM的全数字存算一体AI计算架构,除了能有效地解决存算墙和能耗墙的问题之外,还可以解决当下的AI应用面临的“编译墙“问题。在冯诺依曼架构下,计算非常依赖多级存储的架构, 这种架构对编译器非常不友好。编译器在编译代码的过程中无法感知代码的动态特征,会出现卡顿、延迟的情况,而全数字存算一体可以把这些特征变成编译器直接感知的资源,保证时延确定性的同时自动优化资源的分配,可以方便客户快速部署各类算法。全数字存算一体架构时延确定和易部署的特性非常适合于自动驾驶的场景。自动驾驶包含的各类人工智能算法在运行之时会存在不同程度的时延问题,而存算一体的技术不仅可以解决时延不确定的问题,也可以提升系统的整体性能。除了解决时延问题,还具有密度高、容量大、能效比高,能满足自动驾驶大吞吐计算需求,在物理稳定性上也能满足车规级产品在温度变动、震动、稳定性的要求。全面自主研发国产替代从芯片发展的历史来看,任何广泛应用的好产品都必须与成熟工艺紧密合作,比如台积电与英伟达在历史上的联合调试,不断优化台积电的先进工艺制程。而在ReRAM架构的全数字存算一体AI计算芯片这个领域,昕原半导体将会和亿铸科技强强联手、紧密调试,再现当年英伟达和台积电双剑合璧、共同发展先进制程工艺的经典案例。昕原半导体基于Metal Wire工艺,在ReRAM器件的设计和制造工艺已经实现了全国产化,昕原半导体已经完成业界首款28nm制程ReRAM芯片流片,并且,已建成中国大陆首条中试线,拥有了垂直一体化存储器设计加制造的能力。此外,昕原半导体采用对CMOS友善的材料,能够使用标准的CMOS工艺与设备,对产线无污染,整体制造成本低,可以很容易地让半导体代工厂具备ReRAM的生产制造能力,一旦在自动驾驶和AI等领域产生突破性的应用真正起量,工艺马上就能够跟上,这对于量产和商业化应用都有很大优势。近年来,国际形势的变化,使得半导体产业链面临的不确定性增加。也让国产化成为半导体企业的重要建设主题之一。亿铸科技和昕原半导体的联合,也将会使得亿铸科技基于ReRAM全数字存算一体架构的大算力、低功耗芯片相关技术完全自主可控,实现从IP到生产的全国产化。亿铸:小荷才露尖尖角,早有蜻蜓立上头。尽管亿铸科技现在十分年轻,2021年10月才开始在上海正式运营,但它已经是目前国内唯一自主设计基于忆阻器(ReRAM)的“存算一体”大算力芯片的公司。2021年底,亿铸科技完成由中科创星、联想之星和汇芯投资(国家5G创新中心)联合领投的天使轮融资。值得注意的是,领投方均是硬科技投资领域的著名机构。那么,能在如此多巨头涌入的赛道中打出自己的优势,并受到如此多资本的青睐,亿铸科技的底气是什么?这个答案便是亿铸内部一支由产、学、研各界资深技术专家、精英工程师、创新领军人才、产业化先驱组成的国际化创业团队:- 公司高管团队均拥有20+年不同类型芯片及系统软件研发、管理、市场、创业经验。- 公司研发团队成员来自于国内外多家知名芯片企业和多所国内外著名大学,比如斯坦福、德州大学、上海交大、复旦大学和中科大等,已在具备顶尖学术和产业价值的顶会发表论文达40+篇,超过国内其他同类赛道团队的顶会论文总和, 研究成果已在不少知名头部公司商用化。- 核心设计团队完整覆盖器件、芯片架构、SoC设计、软件系统及AI算法等全部技术领域。- 工程团队也拥有丰富的芯片设计与流片经验丰富,能力卓越。综合学界和产业界头部精英人才的强强组合,亿铸科技的团队已完全覆盖存算一体芯片底层的物理层、电路设计、架构全栈、芯片产品参考设计方案、商业化落地以及生态建设等各个方面的需要。后摩尔时代的AI算力赛道,期待新技术的弯道胜出全球AI算力需求迅猛增长。2012年至今,云端AI算力已经增长了超过30万倍,在未来的很长一段时间内,也将保持这个增速。正因如此,国家大力支持相关产业发展。2020年是真正意义上的新基建元年,AI 算力作为AI技术与产业大规模发展的巨大驱动力,将成为整个新基建的核心支撑。但在后摩尔时代,AI算力的普及应用始终面临存算墙、能耗墙和编译墙三座大山的掣肘,致使“高算力、低功耗、易部署”的市场呼声也越来越高涨。但在传统AI算力厂商先发优势的客观环境下,后来者很难在既有技术赛道上实现追赶。然而在新的技术领域比如基于ReRAM存算一体做大算力芯片,各国还处在同一起跑线,国内比如亿铸等先进初创公司已经起跑。“时势造英雄。”每一次计算构架的大变革都会创造一个新的王者。从主机时代的IBM、PC 时代的英特尔到移动时代的高通,智能物联网时代必将会是新技术架构贡献者的天下,我们期待ReRAM存算一体全数字计算这一新技术能够成为解决存储墙、能耗墙、编译墙的新方案,在弯道胜出。
云计算-存算一体-EDA-技术杂谈参考文献链接云计算再定义:云原生背景下的云计算“清华帮”组队创业,要打破芯片能效天花板,对话苹芯科技CEO人人皆可免费造芯?谷歌开源芯片计划已释放90nm、130nm和180nm工艺设计套件三大国产EDA公司,大涨!云原生背景下的云计算■ 多维云资源产品化,促动传统应用软件向云原生系统转型当今,全球头部云计算供应商共同经历了从提供基础设施到提供行业解决方案的历程,单纯的云基础设施服务已不具备前沿竞争力,提供更加贴合下游垂直应用场景的行业级解决方案成为云计算厂商突围竞争的核心策略之一,亦为云计算生态发展的大趋势。相对后起的中小云服务厂商,AWS、谷歌、微软、阿里云具备最优先发机会优势和条件,具体表现为∶(1)自身拥有复杂的业务生态,或具备多行业云上互联网业务;(2)先发云平台对接千万级别商家、承载上亿级别用户;(3)针对双向数据匹配开发程序化计算模式,计算方法沉淀丰富的To B端口服务经验。■ 随硬件层、软件层云化进程推进,云厂商着手推进云架构下层软硬件结合应用软件向云原生系统升级的具体形态包括云原生数据库、云原生存储等,然而独立的云原生产品依然存在数据割裂、数据孤岛等问题,为了使分布式系统更加开放、更加产品化,云厂商持续加入多元中间件,如消息中间件、事务处理中间件、数据库中间件等等。2018年起,为便于开发人员基于K8S系统开展云上调研、分析,谷歌领头对大量中间件进行开源化处理,并持续推动中间件的标准化。纵观云计算形态的发展历程,云厂商已经基本完成了分布式系统向云原生系统的进化,并开启了分布式管控完全标准化和开源化的进程,云上用户可享受愈加开放的集成性云服务平台。云计算定义及再定义——云原生核心∶虚拟机和容器化虚拟机向容器的演进 盘活有限的基础资源,在安全、效率、备份、迁移等方面获得原始资源配置■虚拟机效力升级,追求多核、自研策略成为云厂商发展的大趋势相对硬件服务器,虚拟机部署成本显著降低,进一步提升虚拟机效力是当前云计算龙头厂商的核心策略之一,其中,效力升级路径包括∶(1)虚拟化能力向硬件端卸载——头部厂商如AWS、微软等,持续强化自研业务健壮度,开发专用的、负载统一的、可兼容X86等所有应用的CPU;(2)核数升级——当前云上应用已不局限于单核能力,以ARM架构为例,厂商对多核架构的追求成为大趋势(从60核到98核,到当前120+核)。此外,自研芯片的兴起也成为云本身发展的大趋势。■虚拟机成搭载多元化订阅服务,助力用户完成云资源的本地化部署当前,云厂商交付业务主要方式包括一体机交付、certified交付、纯软件交付等。用户可自行购置硬件基础设施并部署业务。多数头部云厂商选择公共云服务本地化部署加虚拟机软件配置的方式,而非出售分布式存储的方式。用户可持续订阅混合云、私有云服务。云计算定义及再定义——云原生架构核心∶微服务微服务通过细粒度切分、单独进程、轻量级通信、独立部署四个特征解决了单体应用架构衍生的集中式项目迭代流程。■微服务架构经历四轮迭代,基本实现模块松耦合微服务架构(MSA,Microservices Architecture)是一种架构风格和设计模式,提倡将应用分割成一系列细粒度的服务,每个服务专注于单一业务功能,运行于独立部署的进程中,服务之间边界清晰,采用如HTTP/REST等轻量级通信机制。提炼出四点微服务的特征∶1、细粒度切分 2.单独的进程 3.轻量级通信 4.松耦合,可独立部署。■ 微服务切分方法助力组织实现更细粒度的开发流程切分方法微服务应用所完成的功能在业务域划分上相互独立,相比单体应用强行绑定语言和技术栈,微服务的好处是不同业务域有着不同的技术选择权,比如推荐系统采用Python要比Java的实现效率要更高。于组织层面上,微服务对应的团队更小,"一个微服务团队一顿能吃掉两张披萨饼"是业内对正确划分微服务在业务域边界的隐喻,通过最大化"适度职责"实现相对自治,增益开发效率。于开发效率上,微服务团队虽小却要求着更高的开发迭代速度,业内评价标准是至少两周完成一次迭代,所以也反向对微服务的业务域边界划分提出了要求。云计算定义及再定义——云原生架构核心∶DevOps超过50%的受访企业表示对DevOps转型项目存在强诉求,核心关注点在于∶DevOps流程下各业务线需求是否高效到达研发团队,并且是否能够适应敏捷开发流程。■ DevOps标准化目的在实现于敏捷开发闭环DevOps标准化流程包括集成环节自动化、部署环节自动化、测试环节自动化以及运维环节的自动化。DevVOps最终循环流以业务敏捷部署为前提,以敏捷型需求为起点,以需求落地为终点,并通过运维、监控、数据追踪分析等后端节点最终实现需求落地目标,构建DevOps闭环。■标准化理念助力企业DevOps转型企业选择DevOps转型的目标包括∶缩短前置时间,加快部署频率,提高系统的可用性,减少服务恢复时间,降低变更失败率等。DevOps标准化进程涵盖编码过程、环境配置、代码架构、测试工具、Cl/CD流程、系统环境等方面。中小企业在DevOps转型过程中,逐步强化自动恢复功能、运维监控数据采集、大数据分析等能力,以协助运维人员在短时间内恢复服务的目标。业务部门及产品研发线DevOps转型项目在落地期间需要着重注意∶①∶DevOps功能质量是否达标;②∶是否充分理解并匹配业务需求。云计算定义及再定义——云原生全景图简述■云原生全景4层供应、运行时、编排管理、应用定义及开发)全方位定义基础设施云原生基础设施包括供应层、运行时层、编排和管理层以及应用定义和开发层。供应层包括自动化和部署工具、容器注册表、安全及合规框架、秘钥管理方案等,供应层工具协助工程师编写基础设施参数以保证一致性、安全性。运行时层需保障容器化应用程序组件顺利运行并达到通信目标,覆盖云原生存储(虚拟磁盘、持久化存储)、容器运行时(容器隔离、容器资源及安全)、云网络(分布式系统节点、节点连接及通信)。编排和管理层依托云原生天然的可扩展性,顺支持容器化服务形成管理群组。编排和管理层覆盖节点包括编排调度、协调及服务发现、远程进程调度、服务代理、API网关、Service Mesh等。应用定义及开发层作为云原生全景的最顶层,需要可靠、安全的作业环境。该层涵盖数据库、流和消息传递、应用程序定义和镜像构建、持续集成和交付等环节。业务线或可实现代码在生产环境的自 动部署。■可观察性及分析工具贯穿云原生全景4层 云原生团队在选择技术栈时,需注重考虑各类工具能力及功能平衡性,以确定最合适的工具组合。与此同时选择适应度最高的数据存储、基础设施管理、消息系统等方案。■实践过程中,用户及开发者可对应云原生全景路线图选择软件和产品云原生全景路线图整合用户及平台开发者在实际环境中应用云原生技术所思考和处理的问题,包括容器化、持续集成和持续发布、应用编排、监控和分析、服务代理、服务发现、治理、网络、分布式数据库和存储、流和消息处理、容器镜像库和运行环境、软件发布等。■云市场需求差异化演进为趋势性事务,云厂商向行业解决方案供应商迈进基于当前市场背景,头部云厂商进入云钟算重新定义的时期,当下市场的云是否体现出差异化特征仍然基于云厂商对于云计算定义的不同,但可以确定的是,云市场的差异化是趋势性事务。正如AWS、谷歌、微软等全球头部云厂商,从原本单一的基础设施供应商逐渐演化为行业解决方案供应商,云计算服务的集成和整合亦为大势所趋。一些原本在云上部署自身互联网业务的云厂商,天生具备更优越的机会和条件,例如数据的原生性、庞大的用户访问量、长期实时匹配不同用户端的经验等,种种原生业务助力云厂商在计算方面积累充分的下游应用场景服务经验。云计算市场差异化特点——单点需求+云原生数据分析■相对一整套基础设施,云计算市场下游用户更加需要单点问题、单点应用解决方案在驱动因素方面,观察到,云计算市场下游企业多数是受应用驱动,而非受下层基础设施驱动。例如,政务部门往往并非需要购买一整个云上系统,而是需要解决单点问题。与之相似企业用户也更多需要解决一个或多个应用层面的问题。面对政企用户对单点问题或单点应用层面的需求,当前云厂商能够提供的服务存在距离。第一代云市场本质上市互联网公司系统,以基础设施为服务核心,但政企用户通常需要的是解决方案。因此,当前云厂商要更加强针对各行各业解决方案的智能化设计,而非简单的流程设置。可以说,传统模式下,供应商将用户系统简单搬运到云上是较为初级、简单、门槛较低的流程,而当下,能否利用更先进技术明显改善用户业务流程是云厂商提高差异化竞争优势的核心战略。■搭建云原生大数据分析能力成为趋势和潮流在大数据分析领域,市场的差异化特征亦为优势特征,即构建基于云原生的大数据分析能力。云计算市场发展至今,基础设施已基本满足市场需求,在云原生数据库、云原生存储服务趋于成熟的同时,供应商及下游用户更衍生出对云原生大数据分析服务的需求,基于云原生的数据分析服务将成为市场趋势和潮流。云计算市场成长空间—Snowflake对市场的启示Snowflake架构的出现印证了数据仓库理念向微服务模式演进的逻辑,在云服务逐步成熟的时代实现对业务侧需求的精准应对,未来或顺应本地和云端更多的整合、迁移而持续演进。■ Snowflake时代∶源于云原生且专注于数据仓库闭环服务区别于多数数据仓库服务供应商,Snowflake构建出诞生于云原生时代的数据服务产品,针对传统数据服务产品受限于自身架构而无法全方位支持云端负载的局限性,为企业面临的多元数据需求和问题提出新型解决方案。Snowflake强化了数据仓库的价值服务点,核心包括性能、并发性和易用性。在性能层面,启发更多供应商思考针对petabyte级别海量数据的处理方案和降本方案,最大限度发挥云资源效用。在并发性层面,Snowflake的产品逻辑启发开发者更加重视数据层版本迭代可能对用户业务产生的影响,有效应对self-BI时代数据高并发、安全强需求的挑战。而在易用性层面为了让应用层企业用户更加专注于开发核心业务、创造价值,云原生的数据服务可依托更多的自动化方案承揽底层基础业务,持续提升功能易用度。■ 底层架构持续演进∶提升存储、计算、管理服务分离度传统数据仓储服务模式下,用户享用位置相同的资源,在访问量激增的环境下易导致系统崩溃等问题,在高频读写、数据复制、数据迁移等方面也存在显著劣势,延展性、并发性落后于应用层业务需求。而在Snowflake主导的分离式架构下,系统可通过优化规则分配资源,通过节点的独立有效应对延展性和并发性。打破芯片能效天花板自文明诞生起,人类一直在寻求能够更加有效存储信息的方式。从远古时代用结绳计数,到在木板、石块、纸本上记录文字,再到数字存储技术诞生,唱片、磁带、光盘、硬盘、闪存等风靡于世,每一轮存储介质的更新换代,都会开启新的市场机遇之门。如今,创新帷幕再度拉开,被寄予打破“内存墙”限制、突破功耗瓶颈的存算一体芯片技术,在后摩尔时代拔地而起。这在杨越眼中,是任何一次底层的技术革新都可能难遇的“人生机会”,可能每隔10年乃至更长时间,才会出现一次。嗅到这一风向,2021年2月,一家领域专家集结的初创公司苹芯科技正式起航。其核心团队技术背景深厚:由新型存储器及人工智能(AI)芯片领域知名学者、杜克大学电子与计算机工程系正教授、IEEE/ACM Fellow陈怡然,以及覆盖软硬件设计的技术专家杨越、章尧君、许振隆组成。陈怡然和杨越是清华大学校友,陈怡然毕业于电子系,杨越毕业于自动化系,章尧君是陈怡然的首位博士毕业生,许振隆曾在台积电任职多年。在创始团队光环加持下,苹芯科技从公开露面至今一直备受业界关注。就在本周,这家创企刚刚完成新一轮千万级美元融资,此前已经完成三款存算一体芯片的流片,其科研成果还入选了今年举办的固态电路顶会ISSCC 2022。苹芯科技联合创始人兼CEO杨越告诉智东西,苹芯除了目前三款IP芯片,今年下半年将有一款面向端侧低功耗应用的完整SoC流片,并以此规划打造完整“智能感知决策系统”,这颗SoC芯片将具备语音处理、人脸检测等多模态功能,用于完成系统商业化落地的目标。01.清华“90后”师兄弟组队创业要革传统计算体系的命在清华园求学的那段时光,杨越和陈怡然并无交集,也不会想到多年以后,这位比自己大4届的师兄将在美国斯坦福大学旁的餐馆里,向自己发起组队创业的邀请。1998年,杨越被保送进入清华自动化系,正值陈怡然学完本科课程、开启硕士学业。三年后,陈怡然赴美国普度大学读博士,期间索尼的一篇论文,给了研发非易失性存储器技术的灵感。杨越在清华读完书,又到加拿大多伦多大学计算机工程系攻读博士,开始接触存储相关技术,侧重研究软件方向。另一边,毕业后的陈怡然选择先进入工业界历练一番。曾在新思科技、希捷等芯片和存储名企做研发,早在2009年已经开始探索用非易失性存储器做神经网络加速。后来转向学术界,2010年加入美国匹兹堡大学,后加入美国杜克大学电子与计算机工程系,长期潜心科研。值得一提的是,因对新型存储器、神经拟态计算及深度学习加速等方面的学术贡献,陈怡然教授当选了IEEE和ACM双料Fellow。迄今已发表近500篇论文,获得8次国际会议和研讨会的最佳论文奖、1次最佳海报奖和14次最佳论文提名,在存储及AI计算研究领域声名远扬。杨越则在存储行业持续沉淀,先是博士期间参与创办一家固态硬盘(SSD)公司,并主要负责整个软件的开发测试;后来于2019年初到美国存储芯片巨头美光科技的3D XPoint组做首席系统架构师),其团队研发的前沿存储硬盘3D XPoint X100,性能比传统SSD快了1000倍。就在专注于各自工作时,信息产业掀起一股新的巨浪——自2016年AI系统AlphaGo首次击败世界围棋冠军起,AI浪潮开始席卷全球,各类AI芯片如雨后春笋般破土而出。彼时,传统的冯·诺依曼计算机体系架构,是大多数AI芯片的根基。但这类架构存在一大局限性:不必要的功耗浪费太多了。对于动辄处理海量数据的AI计算来说,这种局限性日益显得捉襟见肘。该体系下,计算单元与存储单元完全分离,数据在两者之间频繁搬运,造成额外的延时和能耗开销。读写一次内存数据的能耗,甚至会比计算一次数据的能耗多几百倍。当摩尔定律逼近极限,传统架构的芯片性能“天花板”近在咫尺,要做到10倍乃至100倍的性能提升,必须实现架构层面的颠覆式创新。存内计算技术,作为极具潜力的AI芯片未来方向,终于从幕后走到台前。随着新型存储器和AI硬件两大技术潮流交汇,计算与存储之间的界限变得模糊,一个史无前例的时代机遇,摆在了陈怡然、杨越等人的眼前——基于存内计算的底层架构创新,将是一条AI计算的通途。02.“不想做第1001家AI芯片公司”在斯坦福大学旁边,陈怡然跟杨越一起吃了顿饭,聊起创办存算一体AI芯片公司的想法。两人一拍即合,杨越觉得,这非常符合对新兴事物的追求,相信存内计算的技术路线能将整个芯片系统的性能提上一个新的台阶。顾名思义,存内计算方法用存储器做计算,从根本上解决时延、功率等方面的损耗,打破了“内存墙”、“功耗墙”的瓶颈,因此能做到数量级程度地提升相关的计算效率、能效比等核心指标。再加上当前AI深度学习算法涉及大量矩阵乘加运算,这些矩阵摆放数据的方式与数据在内存中的存放方式相似,用存储器做AI计算加速的思路日渐成熟,各路资本也纷至沓来,争相下注。此时不创业,更待何时?另外两位技术大牛也决定和陈怡然、杨越组队“干大事”。一位是章尧君,毕业于上海交通大学,后在匹兹堡大学电子工程系读博士,师从陈怡然教授,已在新型存储器领域工作十年,曾设计开发多款MRAM商用芯片。另一位是许振隆,本硕毕业于台湾新竹清华大学,多年任职于台积电,拥有逾20年芯片设计经验,曾带领团队成功交付多款量产芯片。当时参与规划组建这个团队的,还有同为清华校友、现任清华大学电子工程系系主任的汪玉教授。汪玉曾参与创办国内明星AI芯片企业深鉴科技,后来该公司被全球FPGA龙头赛灵思收购,与杨越还是高中同窗。就这样,2021年2月,苹芯科技呱呱坠地。存内计算的英文是“Processing in memory”,缩写为PIM,苹芯科技的英文名「PIMCHIP」便由此而来。“苹芯”的“苹”,即是PIM的谐音。苹芯创始团队兵分两路,陈怡然教授作为董事长总揽全局,CEO杨越和CTO章尧君在北京搭建起苹芯的初始团队,负责整个系统的研发;许振隆则带队负责搭建存内计算的内核。“不想做第1001家AI芯片公司,”聊起创业初心,杨越希望在AI时代背景下,将苹芯科技发展成为非冯·诺依曼架构新计算范式的引领者。用一个新的技术去解决一个旧的问题,这没什么意思,存算一体的使命不只是为了迎合市场需求,而应该去开辟一些新的战场,这才是创新技术的长远价值所在。“更多思考的是,在人工智能时代里面,关注的点到底是什么。你要去做1001家AI芯片公司,还是去为一个之前没有智能化的公司完成智能化转型,哪一个对来说是更有意义的?”03.创业半年,SRAM存内计算加速器测试成功什么对苹芯是更有意义的?为了回答这个问题,苹芯团队走访了很多客户,了解对方的痛点、对技术的要求,以及能利用技术实现什么核心价值。“一直对技术抱有敬畏之心,在战略层面沿着先做技术、再做平台、然后做产品的思路,发展过程中几条腿同时走路。”杨越相信比起与巨头狭路相逢,初创公司的机会更多是在细分领域中,能够快速迭代,了解新领域的know-how,快速满足用户的刚需。令杨越很有成就感的是,苹芯的团队氛围非常融洽。“能感觉到大家每天都是非常希望来上班的,工作目标、职业规划都制定得很清晰。”这是一群特别靠谱的工作伙伴。作为一家初创公司,苹芯必须保持很快的流片节奏。第二款芯片流片测试完成后,大家非常淡定,出去吃了顿简单的庆功宴,便马不停蹄地开始推进下一个研发任务。2021年9月7日,苹芯科技宣布其基于SRAM架构的存内计算加速器S200已经测试成功。可以将深度学习算法中占主导的基本运算在存储器内完成,能大幅提升计算效率,并能完成无损精度的运算。苹芯团队称,这款加速器「首次将商用存内计算带入28nm时代」。▲S200芯片性能参数概览该成果还发表在有“固态电路领域奥林匹克”之称的芯片顶会ISSCC 2022上。其32Kb无ADC架构SRAM存内计算加速单元基于28nm工艺搭建模块,能效比高达27.38TOPS/W INT8,同时实现1.041Mb/mm2的高面效比。而在同等条件下,世界上多数加速器测试结果,通常介于2-3TOPS/W之间。足足将能效比提升10倍,苹芯是怎么做到的?04.两大技术优势,三个未来目标苹芯的存内计算加速器S200有两大技术优势:28nm工艺和全数字化设计。杨越说,选择28nm是综合考虑的决定。先进节点固然能带来更高性能,但也意味着更高的流片和量产成本,这与端侧芯片对成本的苛刻要求相矛盾。28nm则相对成本更低,同时也能展现出SRAM向高级制程节点兼容性好的优势。此外,多家晶圆代工厂具备28nm制造能力,在供给产能方面更加稳定和充裕。S200的另一重优势,是全数字化设计。以前存内计算芯片主要是模拟芯片,优势是能效高,但会牺牲一定精度。而苹芯研发的无ADC架构SRAM存内计算加速单元,不仅能保障精度,能效性也能做到更加领先。除了整型数据的支持外,杨越提到浮点数据也在苹芯的技术支持范围内,处于持续优化验证的过程中。▲苹芯科技存算一体AI芯片实物照片软件研发同样是AI芯片公司的战略重心。据杨越观察,端侧客户相对没那么关心芯片底层设计,更在乎端侧芯片的实际表现,包括性能、成本以及好不好用,有三种常见诉求:一是易用性,即上手不费劲;二是可定制性,客户可能有自己的算子,有二次开发需求;三是可扩展性,当硬件计算能力升级,软件不能成为瓶颈。苹芯也非常重视软硬件协同工作,定义有自己的指令集,并围绕上述诉求展开研发,既支持做定制,又顾及升级至数百TOPS板卡时的支持。杨越透露说,苹芯还在做Turnkey方案的准备。为了公司能够坚持自有发展战略规划的实施,苹芯在初期客户与合作伙伴的选择上非常慎重,除了发展理念的契合,还会考虑客户业务需求面临的痛点是否主要由传统冯·诺依曼架构的瓶颈导致。现阶段,希望能通过更多实践,能够充分展现存内计算技术的优势,让这一先进技术能够真正扎根于实际应用,并拓展更宽广的未来。谈及未来三年目标,杨越说,首先是实现落地,二是继续巩固苹芯在SRAM存内计算方向的领先地位,三是在新型存储器研发方面有所突破。“要维护苹芯本身的技术先进性和领先性,因此不管在SRAM还是新型存储器方向,都在持续进行着最前沿的探索。”杨越说。05.探索打开高能效计算之门的金钥匙在杨越看来,存算一体AI芯片公司直面的竞争对手不是彼此,而是那些传统的AI芯片公司。“觉得市场并没有进入同质化竞争的阶段。”谈道,“更重要的是大家要拧成一股绳,把存内计算技术的先进性和可落地性展现出来。”相较传统AI芯片,存算一体AI芯片的挑战会更加宽泛。存内计算本身是一门技术壁垒森严的设计方法学,需要多年经验积累、大量资源以及时间投入才能实现。也正因此,过去六年,存算一体AI芯片创业几乎均由技术专家主导。▲国内在研存算一体AI芯片的企业(智东西制表)当前存算一体AI芯片创业呈多元化趋势,有模拟芯片与数字芯片之分,有NOR Flash、ReRAM、SRAM、MRAM等不同新型存储器。其目标市场也各不相同,从可穿戴设备、智能家居、视频监控到智能驾驶、云端数据中心应有尽有。这种“各自为政”的特点,使存算一体很难出现一个统一的编程标准,大家都是针对自己的应用场景和性能目标,各建各的软件栈。无论选择小算力还是大算力应用,企业都得摸着石头过河。考虑到现阶段的实际情况与技术发展的现实规律,苹芯团队选择先在小算力上完成全技术通路和商业通路,积累更多能力后,再将算力做大。▲当前主流AI芯片设计对比(智东西制表)之所以选择SRAM来完成技术验证与落地,苹芯团队主要出于四点考虑:一是SRAM在存储器历史长河中长期存在,技术相对成熟,稳定性和良率都有保障;二是具备先进节点的兼容性,客户从65nm升级到16nm,能保证继续使用;三是在开发接口方面比非易失性存储器更简单;四是非常短的读写延迟和无限次的in-place擦写次数。尽管SRAM属于易失性存储器,掉电后数据就丢了,但AI实际应用很少出现按分按秒的频繁断电情形,否则这对计算体系结构的其他部分伤害很大,是一个应该主要规避的问题。杨越认为,无论从算力还是落地容易程度来看,SRAM最先可能在端侧取得较大规模的产业化。AI时代的终端及边缘计算需求日益旺盛。如果所有计算都传至云端处理,传输过程会造成时延;此外,很多用户不愿意将自己的隐私数据上传至云端,AI计算本地化的需求正在兴起。这对AI芯片带来新的要求——更高效率、更低功耗,而基于SRAM的存算一体方法恰恰擅长于此。“每一个SRAM的内核能够做到多少绝对算力,非常清楚。”杨越说,芯片的算力、面积、效率等基础指标互相牵制。如果想突出高能效比及成本等优势,那么算力难免要做些平衡。相比其他类型的存储器,SRAM存在单元面积偏大、存在静态功耗高、成本略高等问题,但杨越认为,仅从SRAM本身来考虑,是不全面的。存内计算在系统中扮演协处理器的角色,要比的不止是存储器,而应该从整个系统层面来看性能表现和成本影响。SRAM的这些短板,可以通过系统设计来矫正差距。例如,端侧发生的大多事情都是主控设备不感兴趣的,利用这一特点,苹芯降低功耗的解决方案是在设备待机时将大部分SRAM存算单元关掉,只预留一个睡眠模式,在最小的模块里保持监测状态,当物体检测、语音交互等感兴趣的事件发生时,存内计算模块才会被唤醒。当前存算一体芯片的拳头优势是能效比,其高能效比主要体现在存储单元层,但这个数字还没有跨越到系统级。这是因为内核与系统之间的通信,会受带宽和其他数据处理需求的限制,很多存内计算资源没有被饱和地利用起来,从而没有最大化的发挥存算一体的优势。苹芯正在做面向存算一体的AI算法改良工作,即通过软硬件协同设计,提高计算单元利用率,释放其在兼顾吞吐量和效率方面的优势。考虑到存储密度的限制,目前SRAM更适合做计算密集型应用。但在真实应用场景中,很多网络模型非常复杂,可能存储密集与计算密集兼而有之,因此苹芯还计划研发一个混合设计架构,让ReRAM或MRAM和SRAM搭配协作,不同的存储器各司其职,最终获得更好的整体性能。毕竟,谁能率先设计出兼顾计算密度与存储密度的存内计算硬件架构,谁就拥有了打开高能效计算之门的金钥匙。06.60个问题与CEO角色适应现在,杨越的笔记本电脑里,正躺着一个长期思考的问题清单,里面已经列了60个关乎公司发展的重要问题,足足填满了5页slides。杨越说,需要化繁为简,先去解决前三项最重要的问题。最近在看一本书《在硅谷管芯片:芯片产品线经理生存指南》,这是一位硅谷芯片产品线经理写的,总结了芯片设计、生产、销售、管理到市场营销和升级维护的工作全流程。觉得,CEO应扮演好两个角色,一是有销售的属性和精神,是一种不达目的不罢休的精神;二是成为一个好的产品经理,努力提升整个公司的一个形象和品牌,完成技术变现。对于已在海外生活多年的杨越来说,回国创业意味着要融入新环境,但并没有为此感到负担。更看重“能够有机会参与科技的变革和升级的浪潮,并有幸做出贡献。这些人生际遇与经历的价值将远远胜过安稳的生活。”“这个人适应能力和学习能力都非常强。”杨越回忆起创业初期,朋友们给了很多有价值的参考意见。如果非要说有什么需要适应的,那大概是环境的改变:国内外创业氛围大不相同,国内的创业冲劲好过世界上任何一个国家,节奏相对更快、对结果要求更多,而国外很多创业团队以技术为导向,更在乎对技术本身的追求。“本身是有技术洁癖的人,如果看到一些技术上的不求甚解,或者说没有打破砂锅问到底的态度,都会指出并提出严格的要求。” 创业后,杨越的思维发生了一些转变,做公司不止是在技术上展现控制力,而是要在整个行业逐渐树立一个“先行者”的角色。压力当然也是有的。“每天都是在救火状态,”杨越说,每天大大小小的挑战接踵而至,包括公司的战略发展制定、合作伙伴沟通、日常运营,甚至研发中的debug,跟一众芯片公司抢夺人才等等。由于苹芯团队扩张很快,还总是面临办公室空间不够用的问题。还有一些突发事件的应急。比如,今年上半年,连绵不绝的新冠疫情,给苹芯做封装、板级demo等方面带来一些进度延迟。因此,杨越还在持续学习、自提升。工作之余,也会参加一些体育活动,比如喜爱的足球。“在创业之后,踢球的时间越来越少,所以非常珍惜每次踢球的时间。”原来在上大学时,杨越曾是清华自动化系的足球队队长,获得过校联赛冠军;出国后,还在高手云集的多伦多华人联赛中获得过最佳射手。07.先让第一家客户用起来现阶段的苹芯,面临“理想与面包”的选择问题。其商务拓展战略团队分布很广,既有跟进消费电子类的,也有智能制造、智慧农业等方向。杨越很清楚,等需求到眼前再行动,会很被动。尤其是创企,必须主动创造需求,将技术带来的直观价值送到客户面前。AI芯片公司得先贴上一个“能落地”的标签,让第一家、第二家客户用起来,第三家到第一百家客户才会接踵而至。“根本逻辑是想去解决一些能够拓展认知边界的问题,这样才叫人工智能。”杨越说,很多人希望AI将人类能完成的事情做到更好,但这不是AI真正的意义所在。“想法是,让AI去完成人完成不了的事情,或者说是很难去完成的事情,换句话说,应该去做雪中送炭的事,而不应该去做锦上添花的事。”据判断,AI的杀手级应用还在探索过程中,市场有巨大的开拓空间,目前AI芯片市场仍然处于爆发前的势态。但相信很快将有一两家AI芯片公司,在非消费电子类行业里打开一个市场。今年上半年,半导体行业普遍面临的资本缩圈问题,但杨越发现,也许是得益于技术先进性,这一趋势对存算一体芯片企业的融资进程和估值并没有造成很大的影响。不过也观察到,技术先进性已经不是资本唯一的考量标准,现在投资正慢慢回归理性,投资机构要看落地方向、财务预期,以及一些芯片创业的经典逻辑。看向未来,存算一体AI芯片要走向大规模商业落地,认为关键在于解决市场需求问题。回顾当年美国半导体的兴起,科学及产业政策的驱动起到很大助力,仅靠补贴、优惠等策略,不足以解决实际需求问题,要带动上游芯片产业的发展,必须鼓励下游的企业使用新的技术产品。在杨越看来,现阶段存算一体AI芯片产业发展面临的主要变量,是政策层面如何帮助芯片公司实现收入的从负转正,即构建正确的商业营收模型,帮助半导体公司生存下来。至于技术难题,那终将会被克服。08.结语:站着走出去,才是胜利时间过得很快,苹芯科技转眼已创办18个月了。芯片架构创新的必要性,正随着摩尔定律放缓而愈发凸显。当制程工艺演进逐渐逼近物理极限,后摩尔时代的芯片优化路径,需要借助先进制程、先进封装与架构创新的组合拳。不同时代对计算的要求不同。某种程度上,杨越希望苹芯能够成为“人工智能时代的Arm”。就如当年Arm解决了移动端的芯片需求,现在,苹芯团队也看到了类似Arm当年的机会——当一个硬件设计和创新,能实现更可靠、更稳定的AI计算,能做到多、快、好、省,那么终端智能将变得无处不在。在充满变动的时代背景下,苹芯团队对很多事情也提前做好最坏的打算,为此储备粮草,控制好现金流,专注提升核心竞争力,持续提高自身抵抗风险的能力,以期走得更加长远。进门虽已属不易,能站着走出去,才是胜利。谷歌开源芯片计划已释放90nm、130nm和180nm工艺设计套件这是世界首个开源 PDK,目前已经提供 130nm、90nm 以及 180nm 的工艺设计套件,这些数字听起来没有 3nm 那么让人兴奋,但在物联网的众多硬件设计中被广泛应用。谷歌联手 GlobalFoundries,释放 180nm 的访问权限过去一年,谷歌忙于扩展免费开源芯片设计和制造计划,以进一步构建定制芯片的开发人员社区,并围绕开源硬件构建一个蓬勃发展的生态系统。近日,谷歌宣布与 GlobalFoundries 合作,共同发布基于 Apache 2.0 许可的 GlobalFoundries 180MCU 技术平台的工艺设计套件 ( PDK ),以及用于在 Efabless(一个面向“智能”产品的开放式创新、硬件创建平台)上制造开源设计的免费硅实现程序。根据 GlobalFoundries 的数据,过去几年大约 73% 的代工收入与移动、物联网和汽车等高增长市场相关。具体来说,使用 180nm 的应用在全球每年的产能为 1600 万余片,到 2026 年将增长到
2200 万片。180nm 目前应用在电机控制器、RFID、通用 MCU 和 PMIC 以及物联网传感器、双频 RFID 和电机驱动等领域。此 PDK 包括以下标准单元:· 数字标准单元库(7 轨和 9 轨)· 低 (3.3V)、中 (5V、6V) 和高 (10V) 电压器件· SRAM 宏(64x8、128x8、256x8、512x8)· I/O 和原语(电阻器、电容器、晶体管、eFuse)单元库在此之前,谷歌曾联手 SkyWater Technology ,提供了 130nm 工艺的芯片设计,随后把工艺推进到 90nm 制造。据悉,130nm 工艺在 2001-2002 年期间首次商业化,现在主要用于研究、小型微控制器开发和混合信号嵌入式设计(如物联网设备)领域。90 nm FDSOI 的工艺则与传统的 CMOS BULK 工艺不同,其在衬底和上层硅之间有一层薄的绝缘体材料。这种薄的氧化物工艺使晶体管比 BULK 工艺中的晶体管要薄得多,并能简化制造工艺。这种额外的绝缘能够在不同的环境条件下提供更好的速度和功率。过去两年,谷歌在 Apache 2.0 许可下发布这些 PDK,两年内获得了超过 350 个独特的 设计 提交,其中大约 240 个是免费制造的。开源 PDK 的意义:降低芯片设计门槛对于任何人而言,如果想要制造芯片,在已经拥有 RTL(电阻晶体管逻辑电路)的前提下,还需要解决两个问题:一是从芯片代工厂获得 PDK(即 Process Design Kit 工艺设计包),二是有足够的资金支付制造费用。PDK 是将 RTL 转化为物理芯片的关键步骤。一般来说,可以从代工厂获取的信息包括但不限于:设计规则文档和文件、晶体管 spice 仿真库、各种 EDA 工具所需要的 tech 文件、standard cell 以及 IP 的各类库文件 (verilog, gds, cdl, lef, lib, spice) 等。其中部分可能由第三方 IP 公司提供,但是绝大部分都可以从代工厂获得。当然,代工厂一般不会无偿提供,甚至会收取相当大的一笔费用,即便是很老的工艺也可能需要花费数千美元。因此,谷歌开源 PDK 的计划对业界来说意义巨大。当然,使用开源 PDK 也需要遵守相关开源协议的规定。在此前与 SkyWater Technology 的合作中,谷歌曾提到几点要求:申请获得免费 SkyWater PDK 的用户的芯片设计必须开源。其次,芯片的制程限制在 130nm 工艺节点,同时,用户需要向 http://efabless.com 上传一份开源的 Git URL。最终,Google 会在申请报名的名单中选择 40 个用户团队,为其提供 10 平方毫米的晶片模具,大约 100 个流片。获得申请资格的团队也无需自己找代工厂代工,SkyWater 将为其生产代工。谷歌的未来计划源更多 PDK 是谷歌开源芯片生态系统发展的关键一步,谷歌欢迎软件开发人员和硬件工程师、研究人员和本科生、业余爱好者和行业资深人士、新的初创公司和行业参与者,带来新的想法和经过验证的经验来帮助其发展开放的硅生态系统。GitHub 链接:https://github.com/google/gf180mcu-pdk(180nm)https://github.com/google/skywater-pdk(130nm)谷歌开放硅开发者门户网站:https://developers.google.com/silicon三大国产EDA公司,大涨!A股市场迎来了第三家国产EDA公司——广立微。如图所示,公司股价大涨!据资料显示,广立微是领先的集成电路 EDA 软件与晶圆级电性测试设备供应商,公司专注于芯片成品率提升和电性测试快速监控技术,是国内外多家大型集成电路制造与设计企业的重要合作伙伴。公司提供 EDA 软件、电路 IP、WAT 测试设备以及与芯片成品率提升技术相结合的全流程解决方案,在集成电路从设计到量产的整个产品周期内实现芯片性能、成品率、稳定性的提升。公司在集成电路成品率提升领域深耕多年,利用业界领先的高效测试芯片自动设计、高速电性测试和智能数据分析的全流程平台与技术方法,为 Foundry 与 Fabless 厂商提供从 EDA 软件、测试芯片设计服务、晶圆级电性测试设备到数据分析等一系列产品与服务,紧密联系制造端和设计端需求,保证芯片的可制造性,在提高芯片性能、成品率、稳定性的基础上,有效加快产品面市速度。公司先进的解决方案已成功应用于 180nm~4nm 工艺技术节点。广立微进一步指出,自成立以来,公司始终秉承持续技术创新的发展理念为客户不断创造价值。公司自主研发的 EDA 软件、测试设备硬件以及成品率技术构成的整体解决方案,已得到华虹集团、三星电子、粤芯半导体、合肥晶合、长鑫存储等亚洲主要大型集成电路制造企业的认可。公司的产品和技术实现了高质量的国产化替代,打破了集成电路成品率提升领域长期被国外产品垄断的局面。具体到产品方面,广立微表示,在设计工具方面,公司开发出了测试芯片版图自动化设计工具 SmtCell 与 TCMagic 等;在数据分析工具方面,公司推出电性数据分析软件 DataExp,其报告生成效率大幅提升;在核心技术方面,公司针对集成电路纳米级先进工艺节点,开发出可寻址测试芯片设计技术,并形成相应软件产品 ATCompiler,能够大幅提高测试芯片面积利用率和测试效率。得益于深厚的技术积累、丰富的实践经验和良好的市场基础,公司持续不断地开发多应用场景、高设计效率的 EDA 产品,大幅提升测试芯片的设计和测试数据分析效率,更好地服务集成电路制造与设计厂商,助力集成电路行业快速发展。这些领先的产品帮助广立微在过去多年里获不错的营收表现。谈到本次融资的用途,广立微表示,公司本次拟公开发行不低于 5,000 万股人民币普通股(A 股)股票,募集资金总额95,557.31 万元。本次发行不涉及老股东公开发售其所持有的公司股份,实际募集资金扣除发行费用后,全部用于公司主营业务相关的项目。在广立微上市暴涨之际,更早之前上市的华大九天和概伦电子业绩也一直走高。其中华大九天在今天涨了20%,概伦电子涨幅超过12%。首先看华大九天,据介绍,华大九天主要从事EDA工具软件的开发、销售及相关服务。EDA工具是集成电路领域的上游基础工具,应用于集成电路设计、制造、封装、测试等产业链各个环节,是集成电路产业的战略基础支柱之一。公司主要产品包括模拟电路设计全流程EDA工具系统、数字电路设计EDA工具、平板显示电路设计全流程EDA工具系统和晶圆制造EDA工具等EDA工具软件,并围绕相关领域提供技术开发服务。公司相关产品和服务主要应用于集成电路设计及制造领域。至于概伦电子,资料显示,概伦电子成立于2010年,自成立之初,公司创始团队便认识到全球集成电路先进工艺的演进和集成电路的快速发展,需要集成电路设计方法学和EDA流程创新的支撑,同时明确以“提升集成电路设计和制造竞争力的良率导向设计(DFY)”理念为指导,进行前瞻性的技术研发和产品布局。 近年来,随着先进工艺节点向7nm及以下演进,设计和制造的复杂度及风险程度大幅提升,能否保证芯片具有较高的性能和良率成为集成电路企业关注的焦点,DFY的前瞻性得以充分验证,并经过多年积累进一步演进成为新的“设计-工艺协同优化(DTCO)”方法学。 据招股书介绍,概伦电子围绕DTCO方法学,聚焦于EDA流程创新,择其关键环节进行逐个突破,在器件建模和电路仿真验证两大集成电路制造和设计的关键环节进行重点突破,先后自主研发了具有国际市场竞争力的器件建模及验证EDA工具和电路仿真及验证EDA工具,可有效支撑7nm/5nm/3nm等先进工艺节点下的大规模复杂集成电路的设计和制造,帮助晶圆厂在工艺开发阶段评估优化工艺平台的可靠性和良率等特性,建立精确的器件模型、PDK和标准单元库,并通过快速精准的电路仿真帮助集成电路设计企业有效预测芯片的性能和良率,优化电路设计。半导体行业观察参考文献链接https://mp.weixin.qq.com/s/2-MAT6xI2fcXT4LOO00gSQhttps://mp.weixin.qq.com/s/bryK0IfNciB-UdigtUOfnAhttps://mp.weixin.qq.com/s/Snlh8rJByc9vvqEvnIad2ghttps://mp.weixin.qq.com/s/CeiWJ_SbzxUIFo4phZ7HGw

东数西算
绿色数据中心
IDC
智算中心
新型数据中心
液冷数据中心
随着生命科学、基因测序、医药研发、高性能计算、深度学习、遥感测绘、地质勘探、冷冻电镜、数据分析、数据挖掘、真空羽流、并行计算等技术的快速发展,以及国家东数西算政策的支持,建设绿色数据中心、智算中心成为人们关注的重中之重。
为加快推广先进适用节能技术装备产品,推动工业和信息化领域节能和能效提升,助力碳达峰、碳中和目标实现,工业和信息化部发布《国家工业节能技术推荐目录》和《国家通信业节能技术产品推荐目录》,其中包括流程工业节能提效技术、重点用能设备系统节能提效技术、储能及可再生能源利用技术、智慧能源管控系统技术、余热余压利用技术等5大类69项工业节能提效技术,以及绿色数据中心、5G网络和其他通信业领域等3大类74项技术产品。
由于篇幅有限需要更加详细资料,请发送邮件至marketing@lanhy.cn获取。
高效冷源技术
一、蒸发冷却新风系统主要依托蒸发冷却技术
利用水蒸发吸热的效应来冷却空气,通过水与空气间的热湿交换,空气的显热转变为水的潜热,从而实现对空气的冷却降温。适用于新建和改造的数据中心。耗电比低于0.17瓦/(立方米/小时)。内蒙古某数据中心使用澳蓝(福建)实业有限公司的技术产品,送风量为120000立方米/小时,排风量为100000立方米/小时,额定功率20.3千瓦,年节电37.8万千瓦时,节能率在80%左右。预计未来5年市场占有率可达20%。
蒸发冷却新风系统主要依托蒸发冷却技术
二、间接蒸发冷却空调机组
主要依托蒸发冷却技术,利用水蒸发吸热的效应来冷却空气,通过水与空气间的热湿交换,实现对空气的冷却降温,利用被降温的湿空气(二次空气)通过高分子露点间接蒸发冷却芯体将冷量传递给待处理的空气(一次空气)。适用于新建和改造的数据中心。耗电比低于0.85瓦/(立方米/小时)。内蒙古某数据中心使用澳蓝(福建)实业有限公司产品,送风量为50000立方米/小时,额定功率42.5千瓦。年节电23.4万千瓦时,节能率可以达到50%左右。预计未来5年市场占有率可达到20%。
间接蒸发冷却空调机组
三、智能免维护湿膜新风机组的湿膜加湿系统
将室外新风经湿膜过滤处理后,使新风得到一定净化的同时,新风温度下降4~10℃。通过智能控制系统将湿膜新风机组与数据中心机房内的空调进行联动。适用于新建和改造的数据中心。以北京为例,预计可把数据中心电能利用效率(PUE)由1.75降至1.4左右。张家界某数据中心使用北京华清凯尔空气净化技术有限公司产品,年节电13.6万千瓦时。预计未来5年市场占有率可达到20%。
智能免维护湿膜新风机组的湿膜加湿系统
四、复合冷源热管冷却及空调技术
通过自然冷源和机械制冷相结合的方式,配套热管型室内末端,解决无冷冻水或者不具备建立冷冻站的数据机楼的空调冷却问题。适用于中小型新建和改造的数据中心。在自然冷却模式下,性能系数(COP)≥20,在混合冷却模式下,COP≥6。山西某小型改造数据机房使用北京纳源丰科技发展有限公司的产品,共采用12套总冷量520千瓦的复合冷源热管冷却及空调产品,年节电45.38万千瓦时。预计未来5年市场规模将超过1万套/年。
复合冷源热管冷却及空调技术
五、变频离心式冷水机组
依据数据中心工况优化设计,采用数字变频技术实现较高COP及综合部分负荷性能系数(IPLV)。智能控制系统依据负荷变化自动变频控制压缩机转速,在各压比下均可运行在最高能效区域并避开喘振点。适用于新建和改造的绿色数据中心,COP≥7.0,IPLV≥11.0,与普通定频离心式冷水机组相比,可节电30%。缺水地区不宜使用。杭州某云计算数据中心使用顿汉布什(中国)工业有限公司的变频离心式冷水机组设备(4用1备),年节电420万千瓦时。预计未来5年市场占有率可达到70%。
变频离心式冷水机组
六、自然冷却风冷螺杆冷水机组
具有压缩机制冷、完全自然冷却、压缩机制冷+自然冷却三种运行方式。机组会根据环境温度高低自行决定运行制冷方式。开机之后机组自动转换,自动运行。适用于新建和改造的数据中心。全年能效比(AEER)>6.0;与传统的水冷式冷水机组相比,节水100%;与常规风冷螺杆冷水机组相比,节电36%以上。北京某数据中心使用顿汉布什(中国)工业有限公司产品(3用1备),年节电205万千瓦时;年节水1.6万立方米。预计未来5年市场占有率可达到20%。
自然冷却风冷螺杆冷水机组
七、变频氟泵双冷源精密机房空调
指将制冷剂循环泵(简称氟泵)和压缩机串联到同一个管路系统中,在低温季节(≤5℃),运行在氟泵节能模式下,只开氟泵制冷,充分利用自然冷源,降低空调耗电量;在过渡季节(5~15℃),同时开启压缩机、氟泵,运行在混合模式下。适用于新建和改造的数据中心,在冬季室外冷源充足的地方整机能效比更高。山西晋城某数据中心使用广东海悟科技有限公司产品,3套100千瓦氟泵机房空调相比于改造前3套风冷机房空调,年节电13.2万千瓦时。预计未来5年市场占有率可达到20%。
变频氟泵双冷源精密机房空调
八、蒸发冷凝式冷水机组
以水和空气作为冷却介质,利用空气的流动及水分的蒸发带走制冷剂的冷凝热。蒸发的水蒸气随空气排走,而未蒸发的水分会滴落到水箱,并通过水泵形成冷却水循环。适用于新建和改造的数据中心。COP≥4.0;AEER≥9.0(北京地区)。北京某所项目使用广东申菱环境系统股份有限公司产品,机房共采用3台740千瓦、2台340千瓦的蒸发冷凝式冷水机组,带自然冷却功能,与风冷冷水机组相比年节电20%,与普通水冷式冷水机组相比年节水50%。预计未来5年市场容量将达到30亿元。
蒸发冷凝式冷水机组
九、板管蒸发冷却式自然冷源数据中心专用冷水机组
采用板管蒸发冷却技术,通过多级制冷获得最低制冷系统温差,利用分段冷却获得高传热介质温度,拉大传热介质温度与环境空气温度的温差;利用室外自然冷源供冷,降低空调系统能耗。机组具备常规机械制冷模式和自然冷源制冷模式双高效运行优势。一体化设计,无须冷却塔、空调机房,设备摆放于屋面,便于安装。适用于新建和改造的数据中心。广州某数据中心使用广州市华德工业有限公司产品,相较于水冷却系统年节电99.96万千瓦时,节能率约为10%,节水21.02万吨,耗水节约量约为50%。预计未来3年市场占有率可达到10%。
板管蒸发冷却式自然冷源数据中心专用冷水机组
十、自加湿机房精密空调
利用布水器将净水从翅片顶部均匀流下,在翅片的亲水膜层作用下形成一层水膜,不饱和空气从翅片间穿过时,迅速吸收水膜表面蒸发的水蒸气,达到加湿效果。适用于新建数据中心。浙江某小型数据中心采用河南晶锐冷却技术股份有限公司加湿量为5千克/小时的自加湿精密空调3台,初期投资未增加,投资回收期为0。自2019年2月至2021年4月三台机组累计加湿时间2320小时,与常规加湿器能耗相比,节电8607.2千瓦时。预计未来5年市场占有率可达到1%。
自加湿机房精密空调
十一、间接蒸发冷却技术
在空-空间接式换热技术的基础上,集成高效蒸发冷却系统的自然冷却技术。适用于大中型新建和改造的数据中心,尤其适用于低温、干燥、水资源丰富的地区。在气象适宜的地区,可降低数据中心制冷系统耗电和耗水。山东某数据中心使用华为技术有限公司产品,负载率为50%时,年均PUE由1.41降至1.25,年节电170万千瓦时。预计未来3年市场占有率可达到35%。
间接蒸发冷却机组工作原理
十二、磁悬浮变频离心冷水机组
由磁悬浮离心压缩机、壳管式冷凝器、降膜式蒸发器、电子膨胀阀、经济器及其电控系统组成,利用制冷循环原理制取冷水。同时,充分利用自然冷源,实现低能耗、高效率。适用于新建和改造的数据中心。机组的IPLV为11.1;机组最大COP为26;机组启动电流为2安。广东深圳某数据中心使用南京佳力图机房环境技术股份有限公司产品,2台880千瓦机组,年节电126.9万千瓦时。预计未来5年市场总额将达到1000台。
磁悬浮变频离心冷水机组工作原理图
十三、蒸发冷集成冷站
由动力模块和蒸发冷凝模块组成,是一种新型节能冷水系统。集成了变频离心压缩机技术、氟泵技术、蒸发冷凝技术等节能技术,可明显降低压缩机冷凝温度,提高系统能效,充分利用自然冷源,将数据中心冷却系统全年制冷负载系数(CLF)降到0.15以下。适用于新建和改造的数据中心。深圳某互联网数据中心使用深圳市英维克科技股份有限公司产品,采用300千瓦蒸发冷集成冷站1套。CLF均值为0.15。预计未来5年,新建IDC数据中心应用规模500套;老旧IDC数据中心改造应用规模200套。
蒸发冷集成冷站工作原理图
十四、复合冷源热管冷却技术及空调
由室外蒸发冷凝散热模块、室内热管散热模块和冷量输配模块组成。适用于新建和改造的数据中心。在热管冷却技术基础上,冷源端集成强制风冷、蒸发冷却、氟泵、压缩机等制冷方式,以进一步增强适用性和节能性。河北某互联网数据中心使用深圳市英维克科技股份有限公司产品,共采用300千瓦复合冷源热管冷却技术及空调7套。CLF均值 0.07以下。预计未来5年市场规模2000~4000套。
复合冷源热管冷却技术及空调
十五、间接蒸发空气冷却系统
采用露点型风侧间接蒸发冷却技术,机组先通过露点型间接蒸发冷却方式对环境空气进行降温、加湿、显热交换等过程,可将机房回风温度降至低于环境湿球温度。对于夏季送风温度接近环境湿球温度的数据中心,可对其进行全年全自然冷却,降低年均PUE。适用于新建和改造的数据中心。内蒙古某云计算产业园使用深圳易信科技股份有限公司的产品年节电3802.9万千瓦时。预计未来5年市场占有率可达到20%。
间接蒸发空气冷却系统工作原理图
十六、风冷空调室外机湿膜冷却节能技术
在风冷空调室外机中设置湿膜装置,干燥热空气经过湿膜时,通过湿膜中水的蒸发吸热,达到入口空气冷却净化的效果。适用于新建和改造的数据中心。室外机进风温度每降低1℃,综合计算可节能约3%。重庆某数据中心使用四川斯普信信息技术有限公司产品,共采用风冷空调室外机湿膜冷却节能装置21台(室外机总功率90千瓦),年节电46.36万千瓦时。预计未来5年实现推广量50000台。
风冷空调室外机湿膜冷却节能技术工作原理图
十七、氟泵双循环自然冷却技术
采用全变频技术、氟泵自然冷技术和蒸发冷却技术的结合,最大限度利用自然冷源,实现全年最优能效比。适用于新建和改造的数据中心。可以无水应用,对使用区域没有限制。使用该产品机房PUE可实现1.25,而采用传统制冷技术的机房优化后PUE可实现1.4。天津某数据中心共采用维缔技术100千瓦氟泵双循环自然冷却机组60台,年节电800万千瓦时。预计未来3年市场占有率可达到20%以上。
氟泵双循环自然冷却技术工作原理图
十八、间接蒸发冷技术
根据室外环境温湿度,机组热负荷百分比在干模式、湿模式、混合模式三种不同运行模式间自动切换,充分利用室外自然冷源,减少机械制冷时长,节约能耗。适用于新建和改造的数据中心。使用该技术机房PUE可实现1.25,而采用传统制冷技术的机房优化后PUE可实现1.4。河北怀来某新建数据中心使用维缔技术36台间接蒸发冷空调,年节电900万千瓦时。预计未来3年市场占有率可达到20%以上。
间接蒸发冷技术工作原理图
十九、蒸发冷却技术
利用水蒸发吸热的效应来冷却空气或水,按照技术形式可分为直接蒸发冷却和间接蒸发冷却两种形式,按照产出介质分类又可分为风侧蒸发冷却与水侧蒸发冷却两种形式。间接蒸发冷却冷水机组属于水侧间接蒸发冷却技术,适用于新建和改造的数据中心,能效比≥15,PUE值可低至1.1。新疆某数据中心使用新疆华奕新能源科技有限公司产品,采用33台制冷量为230千瓦的间接蒸发冷却冷水机组为全年主导冷源,与压缩式冷水机组相比年节电2130万千瓦时。预计未来5年市场占有率可达到35%。
机组热湿处理过程焓湿图
二十、间接蒸发冷却一体化集成冷站
以蒸发冷却技术为核心,集成了板换,水泵,压缩机冷水主机等,可安全、高效的直接向末端提供源。间接蒸发冷却一体化冷站属于水侧间接蒸发冷却技术,适用于新建和改造的数据中心。海南某数据中心(机房)使用新疆华奕新能源科技有限公司产品,一期采用1台制冷量为350千瓦的间接蒸发冷却一体化集成冷站为冷源,与原风冷冷媒空调相比,节电率可达63%,年节电114万千瓦时。预计未来5年市场占有率可达到30%。
间接蒸发冷却一体化集成冷站结构示意图
二十一、间接蒸发冷系统
集成八种节能系统运行模式且各模式间可智能自由切换,自适应不同的运行模式,充分利用室外空气的自然冷源。通过水压和绝热室内的湿度来控制水量,最大化利用水蒸发相变潜热。四川西部某新建数据中心使用依米康科技集团股份有限公司产品,配置2台250千瓦间接蒸发冷系统空调,节能率约43%,年节电40万千瓦时。预计未来5年市场占有率可达到30%以上。
间接蒸发冷系统工作原理图
二十二、直流变频节能技术
指直流变频节能空调与服务器机柜形成冷通道后可实现对服务器机柜的定点冷却,具有制冷空间小、冷量流失少、温度控制迅速、温度控制精度高的特点。采用EC电机(永磁同步电机)的压缩机和风机可随机房负荷的变化智能调节,全年能耗节约率达到29.0%。安徽某数据中心改造使用依米康科技集团股份有限公司产品,配置10台直流变频节能列间空调机组,降低了数据中心制冷能耗,制冷AEER可达到5.14,节能率约46%。预计未来5年市场占有率可达到30%。
直流变频节能技术工作原理图
二十三、数据中心高效模块化集成冷站
采用全变频高效节能技术、机械制冷与自然冷源联合供冷、精准适配节能运行策略、快速部署模块式设计、系统冗余设计、环形管网、电气架构冗余、无扰动强弱电等设计,高气密性检测及自动化焊接等工艺方法,实现系统能效比(EER)>5.5,整机100%厂内预制,工程周期缩短70%,实现全年无间断运行、安全可靠。适用于新建和改造的数据中心。广东某新建数据中心使用珠海格力电器股份有限公司研发的数据中心高效模块化集成冷站,总制冷量7911千瓦,年节电300万千瓦时。预计未来5年市场规模达到3500套以上。
数据中心高效模块化集成冷站
二十四、CVT系列永磁同步变频离心式高水温机组
运用高速永磁同步电机直驱双级压缩技术,搭载专为数据中心中高温工况设计的“小压比”离心压缩机,实现机械效率、电机效率、压缩机绝热效率的全面提升。适用于新建和改造的数据中心,也可应用于大型公共建筑温湿度独立控制空调系统。华东某新建数据中心使用珠海格力电器股份有限公司研发的12台该产品,机组满负荷COP较原设计要求提升18%,全年非标准工况部分负荷性能系数(NPLV)超过9.56,年节电900万千瓦时。预计未来5年市场规模达到3500套以上。
压缩机结构示意图
高效冷却及配套技术产品
一、高弹性冷却技术
通过定制空调盘管墙和风扇墙置于服务器机柜后部,根据需求统一制冷、控制,通过创新的气流组织减少风阻和局部热点,使得制冷效率大幅提升。适用于新建和改造的数据中心。华东地区某数据中心采用阿里云计算有限公司的产品作为机房散热方案,能耗较传统冷冻水精密空调降低70%,从而提高IT产出4%。预计未来5年市场占有率可达到20%。
高弹性冷却技术工作原理图
二、“冰川”相变冷却系统
以气泵、液泵、蒸发冷凝器和并联末端为硬件基础,加以AI智能控制,灵活满足数据中心的制冷需求。适用于新建和改造的数据中心。年均制冷负载系数(CLF)可达0.035,单机柜最大支持功率可达30千瓦以上。河北保定某云计算数据中心使用北京百度网讯科技有限公司产品,为200个功率密度10千瓦的机柜提供制冷,“冰川”相变冷却系统具体配置为6+1,单系统的制冷量为350千瓦。制冷部分年节电272万千瓦时。预计未来3年市场占有率可达到30%~40%。
“冰川”相变冷却系统工作原理图
三、数据中心持续供冷与削峰填谷相耦合的水蓄冷产品
在传统数据中心应急蓄冷罐的基础上,将冷却水补水的1/2存储到蓄冷罐中,降低项目储水投资。在极端的停水条件下,通过蓄冷罐给冷却水系统补水,利用可调节布水器调节布水器高度,保障数据中心的安全性。适用于新建数据中心,产品节能率为20%~30%。某数据中心使用北京环渤高科能源技术有限公司产品,共采用2套单台容量为735立方米自调节型高效水蓄冷设备以及配套系统,年节电38.27万千瓦时。预计未来5年市场占有率增长100%以上。
自调节型高效水储能设备
四、喷淋液冷系统
通过将低温冷却液送入服务器精准喷淋芯片等发热单元带走热量,冷却液返回液冷冷却液分配单元(CDU)与冷却水换热处理为低温冷却液后再次进入服务器喷淋,冷却液全程无相变。液冷CDU的冷却水由冷却塔和冷水机组提供。适用于新建和改造的数据中心。数据中心满载运行时,电能使用效率(PUE)值低至1.07,全年平均PUE值处于1.1以下,节电率达50%以上,单体机架功率集成可达50千瓦以上。上海某数据中心使用广东合一新材料研究院有限公司产品,配备12个机架,每机架额定功率32千瓦,总功率384千瓦,采用喷淋液冷技术,年节电196.22万千瓦时。预计未来5年市场占有率可达到10%。
喷淋液冷系统工作原理图
五、液/气双通道精准高效制冷技术
根据数据中心服务器的热场特征,高热流密度元器件(例如CPU)采用“接触式”液冷通道致冷;低热流密度元器件(例如主板等)采用“非接触式”气冷通道散热。适用于新建和改造的数据中心。数据中心PUE<1.15,单机架装机容量≥25千瓦。广州某数据中心使用广东申菱环境系统股份有限公司产品,采用45千瓦液/气双通道精准高效制冷技术2套,整体PUE低于1.15,相较常规PUE为2.0的机房年节电62.5万千瓦时。预计未来5年市场占有率可达到10%。
液/气双通道精准高效制冷技术工作原理图
六、节能节水型冷却塔技术
在传统横流式冷却塔的基础上,应用低气水比技术路线,降低冷却塔耗能比,同时减少漂水。适用于新建和改造的数据中心,缺水地区不适宜使用。耗电比在0.030千瓦/(立方米/小时)以下,漂水率小于0.010%。某数据中心使用湖南元亨科技股份有限公司产品,配置4台冷却水量800立方米/小时的元亨节能节水冷却塔,年节电26.1万千瓦时,节水1.1万吨。预计未来5年市场规模将增长至8亿元/年。
节能节水型冷却塔技术工作原理图
七、浸入式散热数据中心
由密封的液冷机柜、内部循环模组、换热冷却设备、内外控制设备等组成。IT设备完全浸没在单相导热液中,通过单相导热液直接对发热元件进行热交换,升温的导热液再通过外部驱动系统进行二次热交换,冷却后回流到机柜内部,达到控温效果。某数据中心购买兰洋(宁波)科技有限公司10台浸入式散热数据中心产品,并定制无须散热硬件的服务器,该数据中心IT设备负载约500千瓦,使用后,年节电341.65万千瓦时。预计未来5年市场占有率可达到60%。
浸入式散热数据中心工作原理图
八、浸没式交变脉冲电磁波法循环冷却水处理技术
运用特定频率范围的交变脉冲电磁波,使电磁波能量有效激励水分子产生共振,增强水的内部能量,促使冷却水中形成无附着性的文石及在钢铁表面形成磁铁层,解决结垢和腐蚀问题。同时这种独特的离子电流脉冲波也具有显著的微生物灭杀功能,可以控制细菌和藻类的生长。适用于新建和改造的数据中心。某数据中心使用上海莫秋环境有限公司产品,单塔处理循环冷却水流量575立方米/小时,单套系统年节电8.29万千瓦时,年节水1.5万吨,年节能药剂费8.0万元。预计5年内市场占有率可达到30%。
浸没式交变脉冲电磁波法循环冷却水处理技术工艺系统图
九、数据中心用DLC浸没式液冷技术
通过将IT设备浸没在冷却液里并直接将热量传递给冷却液,冷却液吸收热量后通过液冷主机与水循环系统换热,水循环系统将热量带到外部换热设备(如冷却塔、空冷器等)并散发到空气中,即完成一次液冷系统的散热循环。适用于新建和改造的数据中心。数据中心使用浸没式液冷技术,平均PUE值可达到1.1。上海某数据中心使用深圳绿色云图科技有限公司的直接浸没式液冷产品,部署了504个机柜,单个机柜功率为11千瓦,年节电728.6万千瓦时。预计未来5年市场占有率可达到8%。
数据中心用DLC浸没式液冷技术工作原理图
十、空调节能控制柜技术
通过变频调速技术,在满足机房制冷量需求情况下,在低负荷时降低压缩机与风机的转速,使制冷量与机房实际热负荷相匹配,从而提高空调效率,实现节能效果。适用于在用数据中心改造。空调节能率(包括压缩机和风机)可达30%以上。某集团IDC机房使用深圳市共济科技股份有限公司产品,给空调安装节能控制柜后,年节电14.43万千瓦时。预计未来5年市场占有率可达到35%。
空调节能控制柜技术工作原理图
十一、智能变频柜
将智能变频柜增加在精密空调压缩机、室内风机供电前端,使其采集室内的温度信号,根据蒸气压缩式制冷理论循环热力计算结果输出相应控制信号控制压缩机、室内风机工作频率,进而实现降低能耗30%、提高送风温度精度80%、延长压缩机寿命200%的功能。杭州某数据中心使用深圳市英维克科技股份有限公司产品,采用智能变频柜180套。改造后年均节能率30%,年节电1245万千瓦时。此技术主要针对直膨式定频机房空调改造,预计未来5年市场占有率可达到10%。
智能变频柜工作原理图
十二、数据中心高效液冷技术及其基础设施产品
通过采用浸没式相变液冷技术,对传统风冷数据中心进行系统化变革,节省原冷却系统约80%的能耗,PUE<1.2,单机柜部署密度>100千瓦,可从冷却性能、功耗、环境效益等综合效能方面加快推进数据中心绿色生态化建设步伐。适用于新建和节能改造的数据中心。北京某中心采用曙光数据基础设施创新技术(北京)股份有限公司产品的88套“1拖2”液冷相变计算单元后,机房配电容量28兆伏安,机房面积仅800平方米,整体系统仅冷却部分年节电0.5亿千瓦时。预计未来5年市场占有率可达到50%。
浸没液冷换热模块工作原理图
十三、机房湿膜加(除)湿技术
加湿方式为机房干热空气通过湿膜时,被加湿、降温和净化,除湿方式为输送机房相对湿润的空气通过换热器冷凝除湿。智能控制器实现对湿度的控制。与传统红外加湿和电极加湿技术相比,湿膜加(除)湿机节能率可达90%以上。适用于新建和改造的数据中心。浙江某数据中心使用四川斯普信信息技术有限公司产品后,年节电158.9万千瓦时。预计未来5年实现推广量10000台。
机房湿膜加(除)湿技术工作原理图
十四、数据中心循环冷却水系统节能技术
应用智慧算法控制冷却水水质和系统运行参数,通过降低冷却水供水水温和制冷机趋近温度的方式,降低制冷机的制冷单位能耗。适用于新建和改造的数据中心,降低整站能耗5%~10%左右。某数据中心,使用天津鲲飞环保科技有限公司产品,年节电132.17万千瓦时,年节水830吨。预计未来3年市场占有率可达到20%。
数据中心循环冷却水节能技术工作原理图
十五、智能喷雾系统
利用离心雾化器把水雾化后挥洒在冷凝器进风侧平行空间,有效降低了空调冷凝器进风口的环境温度,提高了冷凝器的热交换效率,达到降低压缩机排气压力和减少压缩机功率消耗的目的。适用于数据中心空调的节能技术改造,缺水地区不适宜使用。某数据机房使用天来节能科技(上海)有限公司产品,经对比测试,在空调室外机冷凝器进风侧安装智能喷雾系统的综合节能率约19%,年节电13.83万千瓦时。预计未来5年内,国内市场规模(进行雾化节能改造的空调)将达到10000台,尤其在老旧风冷空调的数据中心改造中有较大的推广潜力。
雾化器
十六、数据中心冷却用高效通风机
采用优化叶片,整体优化流场同时电机速度可控效率高,在宽载荷、宽转速范围内保持高效低耗,适用于新建和改造的数据中心,适用信息设备负载率范围为25%~100%。北京某数据中心使用威海克莱特菲尔风机股份有限公司产品进行改造,目前已运行5年,安全可靠无故障,单台风机年节电约7200千瓦时。预计未来5年市场占有率可达到30%以上。
数据中心冷却用高效通风机工作原理图
十六、高效环保型氟化冷却液
包含全浸没相变和单相冷却介质,用于浸没式(接触式)液冷。具有价格低、材料相容性好、温室效应潜能值低的特点。适用于新建和改造的数据中心。产品绝缘不导电、无闪点,臭氧消耗潜能值(ODP)为0,全球变暖潜能值(GWP)<150。浙江某数据机房使用浙江诺亚氟化工有限公司生产的氟化液产品,实现PUE控制在1.1以下。对比同规模常规风冷数据中心可节约65%占地面积,年节电23.5万千瓦时。预计未来5年市场占有率可达到15%。
高效环保型氟化冷却液工作原理图
高效供配电技术产品
一、10千伏交流输入的直流不间断电源系统
通过配电链路和整流模块拓扑两个维度对原有系统进行优化,减少了系统66%的配电环节,从而实现了最高运行效率,相比传统方式提升超过3%。适用于新建和改造的数据中心。华东某数据中心采用阿里云计算有限公司18台1.2兆瓦 10千伏交流输入的直流不间断电源系统,使用DR架构配置,供电部分年节电850万千瓦时。预计未来5年市场占有率可达到20%。
10千伏交流输入的直流不间断电源系统产品外观图
二、分布式电源技术
将集中式供配电系统“化整为零”,分散部署在数据中心的机柜中。采用内置锂电池模块替代铅酸电池,将传统供配电系统成熟稳定的控制技术与新型高性能锂电池储能技术相结合,降低了数据中心供电系统的能耗、体积和重量,提高了供电系统的可靠性,机房的空间利用率提高30%~50%。适用于新建和改造的数据中心。某数据中心使用安徽明德源能科技有限责任公司的分布式电源系统,相较于集中式供电系统,节省电能损耗约5.6%;总体收益提高30%;同时可实现分批投入;支持灵活调整供电制式,适应业务发展的需求。预计未来5年市场占有率将超过5%。
分布式电源技术工作原理图
三、分布式锂电池备电系统
采用技术成熟的高倍率锂电池,通过串并联组成电池包,与控制充、放电的DC/DC等组成备电单元,多个BBU通过并联组成分布式电池备电系统。适用于新建和改造的数据中心。某数据中心使用北京百度网讯科技有限公司的产品215套,供电效率可达99.5%,节省机房面积25%以上,使用寿命提高2~3倍,年节电40万千瓦时。预计应用规模将不断扩大。
分布式锂电池备电系统工作原理图
四、飞轮储能装置
由飞轮储能电机、电力电子装置、监控系统、辅助系统等组成。通过飞轮储能装置、UPS机柜、备用电源对原有UPS蓄电池不间断电源系统进行改造,提高了UPS不间断电源系统的可靠性、安全性。适用于新建和改造的数据中心。飞轮储能装置最高效率>98%;飞轮储能电力系统效率>97.5%。某数据中心使用二重德阳储能科技有限公司产品,年节电超过5000千瓦时。预计未来3年市场占有率可达到10%。
飞轮储能装置工作原理图
五、敞开式立体卷铁芯干式变压器
采用立体卷铁芯结构,三相磁路完全对称等长,确保三相供电平衡。采用芳纶绝缘纸与艾伦塔斯单组份漆组成的混合绝缘技术,最高绝缘等级C级,最高允许温度为220℃,750℃以下不会释放有害气体。能耗水平可达到或优于GB 20052—2020《电力变压器能效限定值及能效等级》中1级能效标准。某数据中心使用海鸿电气有限公司产品,配置两台敞开式立体卷铁芯干式变压器,供电系统年节电约40000千瓦时。预计未来3年可保持12.4%的年均复合增长率。
敞开式立体卷铁芯干式变压器铁芯对比图
六、华为新一代中大型模块化不间断电源系统
采用全新热插拔功率模块,其50千伏安功率模块已在行业应用超过8年,最新推出的100千伏安功率模块更加有效节省占地面积和安装工时,系统在线模式效率高达97%,创新智能在线模式效率高达99%。休眠模式低载高效,iPower智能手段提升系统可靠性,简化运维,智能在线模式实现高效率、优指标的同时,保障无中断切换。某数据中心使用华为技术有限公司高效模块化UPS产品,总容量20兆伏安,包括UPS两种机型,相比于传统UPS,效率提升1%,年节电1004万千瓦时。预计未来5年市场占有率可达到65%。
华为新一代中大型模块化不间断电源系统工作原理图
七、智能锂电SmartLi
华为公司推出配套UPS使用的储能产品,具有安全可靠、使用寿命长、占地面积小、运维简单等优点。某数据中心使用华为技术有限公司智能锂电产品,总配置28套UPS5000系列模块化不间断电源(500千伏安)+40套SmartLi智能锂电,年节电6400千瓦时。预计未来5年市场占有率可达到55%。
智能锂电SmartLi工作原理图
八、智能电力模块
采用一体化集成方案,具备一体化集成,安全可靠,节省机房占地面积和提高链路效率,安装省时、省力、省心,架构兼容,部署快速灵活和一体化集中监控等特点,适用于新建和改造的数据中心。电力模块内置高效模块化UPS,采用铜排预制优化供电链路,将原有的数据中心供配电系统链路供电效率从94.5%提升到95.5%。某数据中心使用华为技术有限公司产品,共1000机柜,单柜功率8千瓦,负载率80%,供配电系统全部采用电力模块方案,年节电83万千瓦时。预计未来5年市场占有率可达到40%。
电力模块解决方案
九、模块化不间断电源(UPS)
由整机机柜、功率模块、旁路模块、系统控制模块、监控模块及配电模块组成。各功能单元采用模块化设计,系统支持IECO在线补偿节能模式,可无缝切换,同时系统内置集中式静态开关旁路,抗短路能力强,可靠性更高。广州某数据中心项目使用科华数据10套400千伏安和10套500千伏安数据中心用UPS电源系统,综合年经济效益合计为141.91万元。预计未来5 年市场占有率可达到约30%。
模块化不间断电源(UPS)
十、数据中心用240伏/336伏直流供电系统
针对数据中心和数据机房对供电电源的可靠性、经济性的要求而开发的大功率、模块化、节能型直流不间断电源产品。功率部分采用标准模块化设计,可灵活配置系统容量,根据系统容量不同分为组合式和分体式,其中组合式系统最大容量为210千瓦,分体式系统最大容量为720千瓦。广州某数据中心采用科华数据4套1200安/360千瓦数据中心用直流电源系统,采用17+7的多冗余配置,综合年经济效益合计为59.36万元。预计未来5年市场占有率可达到20%。
节能型智慧数据中心基础设施解决方案
十一、分布式锂电不间断电源系统
采用模块化、小型化设计,可以分散部署在数据中心的每一个IT机柜中对负载进行供电,带载效率高。锂电池内置设计,充分利用锂电池充放电效率高、节能效果好的特性,保证备源时间更长、节电效果更好。取代传统UPS的应用模式和铅酸电池,绿色无污染。按需投入、降低初期投资成本。适用于新建和改造的数据中心。市电模式效率高于94%,电池模式效率高于91%。某数据中心改造项目使用联方云天科技(北京)有限公司产品232套,供电及控温保障部分每台年节电7200千瓦时。预计未来5年市场占有率可达到30%。
分布式锂电不间断电源系统技术原理图
十二、模块化不间断电源
将UPS系统功能部分进行模块化设计,分为机柜、旁路模块及功率模块,整机具有智能控制、绿色休眠备份功能,提高系统运行效率和节能效果。某机场IT配电机房使用深圳市英威腾电源有限公司产品,采用2台RM150/25C模块化UPS产品,供电部分年节电15万千瓦时。预计未来每年出货量21000台。
模块化不间断电源工作原理图
十三、磁悬浮飞轮储能装置
一种机电能量转换和储存装置,以飞轮本体高速旋转的形式存储动能,并通过与飞轮本体同轴的电动机/发电机完成动能与电能之间的转换,此装置采用五自由度主动磁悬浮的轴承体系,飞轮在密闭的真空容器中处于无接触完全磁悬浮状态,以每分钟不低于35000转的转速旋转。在设备正常使用频次内,寿命可达20年以上。适用于新建和改造的数据中心。某数据中心使用沈阳微控新能源技术有限公司产品24台,供电部分年节电90万千瓦时。预计未来5年市场占有率可达到40%。
磁悬浮飞轮储能装置工作原理图
十四、SCB-NX1智能型环氧浇注式干式变压器
目前干式变压器损耗值较低的解决方案,能有效降低数据中心的电能损耗,是一种采用绿色运维管理技术、提升能源和资源利用效率的技术产品。适用于中小型、大型、超大型新建和改造的数据中心。在应用地域地理位置上,SCB-NX1能效系列干式变压器可适应严寒、寒冷、温和等各种气候条件地区。某数据中心使用施耐德电气(中国)有限公司提供的产品,年节电约48.4万千瓦时。预计未来3年市场占有率可达到4%。
SCB-NX1智能型环氧浇注式干式变压器产品外形图
十五、模块化设计不间断电源
将UPS电源、UPS配电、精密配电柜集成在一个机柜内,采用了专利的E变换运行模式和混合三电平逆变器技术。适用于新建和改造的数据中心。E变换运行模式下效率可达99%,双变换运行模式下效率也可达97%。某企业数据中心使用施耐德电气模块化设计不间断电源产品,采用一台100千伏安一体化不间断电源系统,供电部分年节电4.08万千瓦时。预计未来5年市场占有率可达到15%。
E 变换运行模式工作原理图
十六、APT预制化电力模组
将中低压链路中的中压柜、变压器、低压柜、功率补偿装置、UPS等装置,内部全部通过铜排连接,在工厂完成预制的一体化电源产品。APT系统简化了电气链路,提高了系统的PUE值。铜排连接代替电缆减少了现场施工时间。适用于新建和改造的数据中心。APT系统简化了电气分级布局,铜排的损耗也优于电缆,实际交付时间可缩短为原先的1/6,节约占地面积高达30%。浙江某数据中心采用维谛技术有限公司提供的产品,供电pPUE降低0.02,电力系统节电30%。预计未来3年市场占有率可达到20%以上。
电力系统图
十七、具有AI特征的Trinergy智能调控“三工况”运行模式的UPS产品
能够基于历史和当前市电、负载的情况,自适应选择VFI/VI/VFD(IEC 62040标准规定)三种模式中最优的运行模式。适用于新建和改造的数据中心。德国某数据中心采用维谛技术智能调控“三工况”模式的1600千伏安 UPS,在确保高供电质量和99.999998%可用性的前提下,提供高达98.5%的综合运行效率及高达99.5%的最大效率,年节电约80万千瓦时。预计未来3年市场占有率可达到40%。
具有AI特征的Trinergy智能调控“三工况”运行模式的UPS产品工作原理图
十八、模块化不间断电源(UPS)
各个功能单元采用模块化设计,系统支持在线补偿节能运行模式(IECO),其整机效率高达99%以上,市电供电和电池供电间可0毫秒无缝切换,当先控UPS系统工作在IECO模式时,系统可自动进行功率因数补偿,使UPS的输入功率因数始终大于0.99。系统兼具储能功能,配合锂电系统实现削峰填谷,创造价值。系统内置集中式静态开关旁路,抗短路能力强,可靠性更高。某超算中心使用先控捷联电气股份有限公司的模块化不间断电源产品,相比传统UPS可节电约7%,负载800千瓦,年节电50万千瓦时。预计未来5年市场占有率可达约30%。
模块化不间断电源(UPS)工作原理图
高效系统集成及IT技术产品
一、整机柜服务器
采用48伏供电方案和双输入电源模块架构、虹吸散热技术、标准化设计并独立机柜监控单元(RMC)。IT部分采用池化设计,计算节点和存储节点分离设计,易于扩展。某数据中心使用北京百度网讯科技有限公司整机柜服务器产品,共采用20多个机柜,300多个服务器。单节点实现功耗节省18瓦以上,单节点供电部分年节电157千瓦时。预计应用10万节点以上。
二、X-MAN服务器
基于异构加速处理及计算的定制化服务器设计,结合整机柜的模块化设计,深度挖掘及调优GPU/FPGA/AI加速芯片的异构加速性能,将计算池化,提升并行计算性能,做到资源共享,灵活适配。传统的GPU服务器单机功耗区间为5500~6000瓦,耗电量大,运营成本高。某数据中心部署北京百度网讯科技有限公司提供的3600多台X-MAN服务器,年节能933万千瓦时。百度已经规模化上线承载真实业务,预计潜在普及率高达30%以上。
三、硬盘冷存储库技术
以硬盘作为数据的存储载体,集数据迁移、数据安全、长期存储、查询应用、软硬件系统为一体的系统产品,为用户提供多功能、低能耗、易使用的归档数据长期保存的方法,通过控制节点供电的方式按需智能供电,降低存储的能耗,与同等容量常规存储相比节能87%以上。适用于新建和改造的数据中心以及各行业客户本地化节能存储。某大数据中心使用北京盛赞数据备份系统有限公司的产品,年节电2.7万千瓦时,节能约90%。预计未来5年市场占有率可达到40%~50%。
硬盘冷存储库技术工作原理图
四、新一代节能高效蓝光及光磁电一体化智能存储技术产品
针对海量温冷数据,利用分布式存储架构,融合NVMe、SSD、HDD、蓝光等存储介质的优势,为用户提供异质、分级数据存储服务。适用于新建和改造的数据中心。同等存储容量能耗仅为磁盘存储的1/20。某数据中心使用北京易华录信息技术股份有限公司产品,建设光存储能力500PB、磁存储能力50PB、云计算节点服务能力200台,可提高工作效率45倍,实现节能率约94.72%,年节电100万千瓦时。预计未来5年市场占有率可达到60%。
新一代节能高效蓝光及光磁电一体化智能存储技术产品工作原理图
五、全介质多场景大数据存算一体机
采用基于模块化转笼式光盘库设计技术、单次多光盘快速抓取装置设计技术等,实现数据存储的安全和节能。适用于新建和改造的数据中心。某信息中心使用北京中科开迪软件有限公司产品,自2018年9月项目交付至今,系统保持无故障运行,设计蓝光存储规模1PB,用于归档等冷数据存储。采用蓝光存储相比磁盘存储,年节电2万千瓦时,节电80%以上。预计未来5年市场占有率可达到70%。
存算数据一体机
六、紫晶蓝光存储
依托于数据“冷”、“热”分层的技术理念,大量“冷”数据存放于蓝光介质中。蓝光存储介质95%以上的时间都处于不耗电的状态,每PB数据一年耗电仅为4000千瓦时左右,而保存于磁存储每PB数据一年耗电约为36000千瓦时,单位容量节能约90%。相对于磁电介质,几乎不发热,不会造成周边环境温度过高,绿色环保。适用于新建和改造的数据中心。某市数据中心使用广东紫晶信息存储技术股份有限公司的蓝光存储,年节电150万千瓦时。预计未来5年市场占有率可达到40%。
技术原理图
七、预制式微模块数据中心技术
包含L0+L1融合预制方案和L1预制方案。L0+L1融合预制方案将模块化数据中心与装配式建筑相结合,工程产品化,可6个月完成1000柜业务上线(不含设计时间)。L1智能微模块数据中心方案集IT机柜、制冷系统、供配电系统、监控系统、照明、布线、安防系统等于一体,集成人脸识别等一系列智能特性。某北方数据中心采用华为技术有限公司提供的1100个L0+L1融合预制模块,实际运行年均PUE达到1.15,年节电6339万千瓦时。预计未来5年市场占有率可达到35%。
八、模块化数据中心(微模块)
基于能效管理技术、冷电联动节能技术、智能化运维管理技术等,降低制冷系统能耗及供配电系统损耗,实现实时智能自动化调优,减少运维工程师干预,降低数据中心运行维护成本,最高可节省超过30%的运营费用。广州某数据中心项目使用科华数据股份有限公司的数据微模块产品,启用120套微模块,微模块电能使用效率(PUE)≤1.23,年可节省电费8916.8万元。预计未来5年市场占有率可达到15%以上。
九、微型液冷边缘计算数据中心
由微型液冷机柜、二次冷却设备、服务器、网络设备、硬件资源管理平台等组成。将不需要风扇的IT设备完全浸没在注满冷却液的液冷机柜中,使热量直接传递给冷却液,再通过小功率变频循环泵驱动,将冷却液循环到板式换热器与冷媒系统换热,冷媒系统将换取的热量带到二次冷却设备,通过风机将热量散发到空气中去。适用于新建和改造的数据中心,PUE值可低至1.1。某融媒公司使用深圳绿色云图科技有限公司的液冷产品,IT设备规模100千瓦,年节电8.76万千瓦时。预计未来5年市场占有率可达到8%。
十、池式模块化数据中心
以整体机房建设为理念,由机柜系统、供配电系统、热管理系统、监控软硬件系统以及气流管理系统组成,机柜系统为强抗震及高静动载能力IT设备柜,供配电系统由UPS、电池及精密配电柜组成,热能管理系统由节能制冷空调系统组成,监控软件系统为成套设备综合软硬件系统,气流管理对气流进行有效遏制,各子系统实现工厂预制,现场快速组装模式。上海某数据中心使用深圳市艾特网能技术有限公司的3个池式模块单元,项目整体年能耗约为250万千瓦时,比其他技术方式年节电200万千瓦时。预计未来3年市场占有率可达到40%。
十一、机柜式模块化数据中心
包含承载及通道封闭系统、不间断电源系统、配电系统、环境管理系统、安全管理系统、监控管理系统、照明及可视化系统。采用标准化、模块化、预制化方式。具有提高数据中心整体运营效率,快速部署、弹性扩展和绿色节能的特点。某省金融网点使用深圳市艾特网能技术有限公司方案配置3~5个全封闭机柜,单台制冷量3.5千瓦机架式变容量空调,有效降低制冷能耗。其中模块内空调全年运行耗电量约占传统机房空调的61%,年节电4802千瓦时。预计未来5年市场占有率可达到19%。
工艺图
十二、预制式微模块集成技术及产品
在模块内集成机架、供配电、制冷、环境监控等数据中心组成部件,具有快速灵活、按需部署、建设简单等特点。冷热通道隔离技术可降低能耗。某数据中心机房改造使用深圳市英威腾电源有限公司4套腾智微模块产品,年节电232万千瓦时。预计未来每年出货量1600台。
预制式微模块集成技术及产品工作原理图
十三、双层双联微模块
具有独立运行功能的微模块,包含上下两层,每层四列机架。一体化集成机柜、电源、配电、空调末端、布线、消防、监控管理等系统,冷热通道封闭,装配式设计,8级抗震,IP44防护等级,具有“即装即用”的快速响应优势,可实现快速部署。适用于新建数据中心。全国范围内PUE≤1.3,部分地域低至1.2以下。内蒙古某数据中心使用中国移动通信集团设计院有限公司产品,三个月完成12台产品部署,PUE值约1.21,较新建传统数据中心降低约0.08,年节电353万千瓦时。预计未来5年市场占有率可达到10%。
智能控制及绿色运维管理技术产品
一、AI能源管理系统
通过智能软件和物联网硬件的结合,准确判断用能需求,建立温度场、湿度场等计算模型,精确供能,提高能源利用效率。适用于新建和改造的数据中心。平均节能率20%以上。某空调机房使用北京合创三众能源科技股份有限公司研发的AI能源管理系统,总建筑面积21万平方米,供冷机房水冷空调系统由4台开利离心式冷水机组,配有冷却水泵6台,冷却塔7台14个风扇,空调侧冷冻水泵12台。平均节电率可达28.9%。预计未来3年市场占有率可达到30%。
二、人工智能物联网(AIoT)数据中心垂直制冷能效控制系统
一套实现数据中心制冷系统能耗管理与运行控制于一体的制冷设施整体管控平台、节能控制平台、运行数据挖掘分析平台。本系统利用物联网(IoT)技术、AI技术耦合数据中心IT负载特性、地域气候特性等固有属性,针对数据中心制冷系统建立全局能耗运行模型,在全工况下实现数据中心制冷系统的冷源、输配、末端空调的全局节能智控,整体制冷系统年节电率15%~30%。北京嘉木科瑞科技有限公司将AIoT数据中心垂直制冷能效控制技术应用于北京某数据中心空调节能改造,年节电628万千瓦时。预计未来5年市场占有率可达到30%。
系统架构图
三、“5H”数据中心冷源系统
由满足2小时以上应急的蓄冷系统、群控系统(冷机、冷塔、水泵、板换等)、空调末端以及基于AI技术的建筑自控(BA)系统组成的节能控制系统,可提高整个冷源系统的运行效率。适用于新建和改造的数据中心。性能系数(COP)可提升25%~30%,能效比(EER)可提升10%~15%,WUE可降低8%左右。某数据中心使用北京英沣特能源技术有限公司产品,空调系统节能率达到13%以上,系统运行效率提升20%以上,年节电255.5万千瓦时。预计未来5年市场占有率可达到30%以上。
工作原理图
四、数据中心电力管控系统节能技术
数据中心电力管控系统节能技术是数据中心基础设施管理系统、数据库和流程管理的结合,按照数据中心国际通用安全原则,可以确保安全,提高效能,节能降耗。系统采用美国信息技术工业协会(ITIC)曲线标准,具有“1+3”功能——节能降耗+运行安全、控制安全、通信安全。系统可有效抑制瞬变浪涌,降低电流谐波畸变率和无功损耗,提高功率因数。某数据中心使用北京中大科慧科技发展有限公司产品年节电20.34万千瓦时,节能率33%。预计未来5年市场占有率可达到70%。
数据中心电力管控系统节能技术工作原理图
五、数据中心空调靶向调控节能系统
基于气流组织优化与电能使用效率(PUE)在线跟踪分析,通过动态监测机架负载和温度,融合精密空调冷量靶向调控、“风口-精密空调-冷源”三级逆向按需调控等技术,实现空调系统高效运行。适用于新建和改造的数据中心。实现数据中心空调节电率25%~30%;数据中心PUE值可降低5%以上。某数据中心使用广州远正智能科技股份有限公司产品, PUE值由1.63降至1.48,年节电218万千瓦时。预计未来5年市场占有率可达到10%。
数据中心空调靶向调控节能系统系统架构示意图
六、制冷系统智能控制系统
替代传统的人工调节,通过海量数据分析,训练出数据中心PUE模型,模型精度高达99.5%,推理出最佳参数组合并应用,降低数据中心能耗。适用于新建和改造的数据中心。通过不断学习,持续自我优化,实时更新制冷策略,系统级调优,可以使数据中心PUE降低8%~15%。廊坊某数据中心使用华为技术有限公司产品,共4000机柜,单柜功率8千瓦,负载率70%,全部部署了制冷系统智能控制系统,PUE由1.42降至1.25,年节电3336万千瓦时。预计未来5年市场占有率可达到35%。
制冷系统智能控制系统工作原理图
七、微模块综合监控系统
通过监控微模块温度场、机柜负载情况,利用前馈控制、温度自适应、热点追踪等策略,自动调节空调制冷,以实现按需供冷,有效降低机房能耗及PUE。微模块综合监控系统PUE可降低0.08~0.12。适用于数据中心的新建和改造。广州某数据中心采用科华数据120套微模块,包括2000套机柜, IT总负载为13000 千瓦,综合年经济效益合计为8916.8万元。预计未来5年市场占有率可达到20%。
微模块综合监控系统图
八、智能温控系统
通过企业搭建的大数据服务中心,提供运维服务平台,通过云端数据化储存和云端数据化分析,实现远端智能化管理、本地智能化管理、远端异常诊断和用户终端智能化的互联互通,为客户提供数字化服务。适用于新建和改造的数据中心。某学校使用辽宁省鑫源温控技术有限公司产品,面积10000平方米,在舒适度完全没有降低的情况下,采暖系统的运行费用降低了12.8万元。预计未来市场占有率可达到50%以上。
智能温控系统工作原理图
九、数据中心冷却系统智能控制技术
基于大数据、AI、物联网和自动控制技术,实现空调系统运行状态优化和节能,以及机房能效诊断和节能潜力评估。适用于新建和改造的数据中心。针对空调末端设备实施,综合节能率不低于25%;针对冷站实施,综合节能率不低于15%。某数据中心机房使用南京群顶科技有限公司产品,对所有风冷精密空调进行自动策略调节,PUE由1.6降至1.43,年节电32.52万千瓦时。预计未来3年市场规模在1万台以上。
数据中心冷却系统智能控制技术工作原理图
十、机房环境参数测量分析及AI节能优化技术
采用机器人搭载传感器短时间内自动完成机房空间内的温湿度和空气流量等环境参数的测量,通过气流模型形成温度云图,进行热点分析和室内气流优化,另结合动环监控系统以及BA系统的历史数据,通过机器学习模型训练,优化数据中心节能运维管理。某数据中心空调平均能耗为143.2千瓦,使用上海允登信息科技有限公司的技术进行测量分析及改造后,年节电39.5万千瓦时。预计未来市场占有率可达到50%以上。
十一、数据中心智慧节能云平台
通过采集数据中心内设备的运行信息和环境参数,优化设备运行工况,降低无效能耗输出,实现数据中心的节能和智慧云管理。适用于新建和改造的数据中心。综合节电率(含IT设备能耗)可达10%以上。某数据中心使用深圳市共济科技股份有限公司产品,安装节能及采集设备并搭建智慧节能云平台,年节电560.15万千瓦时。预计未来5年市场占有率可达到40%。
数据中心智慧节能云平台工作原理图
十二、数据中心智能运维管理平台
通过对数据中心基础设施动力环境及IT基础架构全面监控及分析,制定出最优策略,对各系统进行实时控制,实现数据中心能效最优。河北某数据中心有机柜1000架,设计容量15000千伏安,集中式冷水机组制冷系统,使用深圳市杭金鲲鹏数据有限公司的产品改造后,PUE由1.38降至1.29。预计未来5年市场占有率可达到30%。
数据中心智能运维管理平台工作原理图
十三、数据中心电能效率优化及智能运维管理技术
通过融合储能系统网络化管理、暖通系统优化策略算法与自动调控、基于大数据挖掘的节能诊断及优化等多项技术,实现数据中心电能效率整体优化(含电力容量及能流监测、暖通系统自动控制等)。适用于新建和改造的数据中心。系统年可利用率≥99.99%,使用寿命>10年。广东某数据中心使用深圳市中电电力技术股份有限公司产品,设备IP化率达到90%,单套系统测点规模达到30万,数据采集及处理速度提升约30%,异常事件处理效率提升约30%;机房楼年节电50.1万千瓦时。预计未来5年市场规模可达到1000套以上。
数据中心电能效率优化及智能运维管理技术工作原理图
十四、动态在线技术
动态在线技术的UPS产品——视觉识别(VI)动态在线模式是为满足客户高能效比、高可靠性的需求,采用经济型(ECO)旁路直供+逆变器实时在线补偿市电干扰和负载谐波的方式,在市电异常时0毫秒切换到逆变器供电的一种高效运行模式。适用于新建和改造的数据中心。每台600千伏安设备,相较于传统双变换模式的工频UPS,年节电40万千瓦时。预计未来3年市场占有率可达到50%。
动态在线技术工作原理图
十五、基于AI的机房智慧节能系统
通过云边端三级协同支持智能化的能耗分析和预测,核心的AI智能引擎加载了近20余种核心关键AI模型算法,整个产品包含20多项功能创新,基于机房温度、气流分布状态及各类运行数据生成定制化节能策略,减少机房制冷冗余,提高制冷效率。适用于改造的数据中心,制冷节能率可达20%~50%。某数据中心使用中国电信产品,年节电179万千瓦时。预计未来5年市场占有率可达到80%。
基于 AI 的机房智慧节能技术原理图
十六、DCIM数据中心智能管理系统
通过对数据中心设施的检测、管理和优化,将运营管理和运维管理有机融合,提供数据中心全生命周期管理,全方位保证数据中心的可靠性和可用性,结合AI及机器人技术,实现精细化能效管理和智能化运维管理,保障数据中心绿色、安全、高效运行。数据中心管理系统结合AI技术,节能8%;结合容量管理、资产管理、能效管理提升资源利用率20%;结合工单管理、巡检管理等功能,运维效率提升50%,适用于新建和改造的数据中心。某数据中心使用中兴通讯数据中心智能管理系统产品,实现在华南地区PUE低于1.25,年节电1000多万千瓦时。预计未来5年市场占有率可达到30%。
DCIM数据中心智能管理系统功能架构图
十七、机房智慧节能管理系统
面向基础设施数字化监管及节能领域,自主研发动环监控平台、能源管理平台及硬件终端(FSU、DTS),提供软硬件和各类底层传感器部署调测及节能优化服务,实现对各类基础设施场景的远程监管、火灾防控及节能管控。提供能源审计、项目设计、设备和材料采购、工程施工、人员培训、节能量检测、改造系统的运行维护与管理等服务。北京某数据中心使用中移系统集成有限公司产品,包括能源管理平台及节能改造优化服务,平均年节电1000万千瓦时。预计未来5年市场占有率可达到15%。
可再生能源回收利用技术
一、废铅蓄电池全组分清洁高效利用处理技术
通过开发电池自动破碎、精细分离工艺及设备,硫酸铅膏“氧化熔炼—还原吹炼”双侧吹富氧熔池熔炼技术及铅栅低温熔铸处理工艺,实现一次粗铅产出率70%以上,单位产品水耗0.3立方米/吨;塑料中铅含量小于0.01%,铜极柱回收率高于99.5%,锡、锑等有价金属回收率高于98%。适用于新建和改造的数据中心。某示范工程使用安徽华铂再生资源科技有限公司提供的该技术,废电池破碎、铅膏熔炼、铅屑冶炼综合能耗分别降至2.25千克标煤/吨、152.88千克标煤/吨、10.66千克标煤/吨,单位再生铅产品新水消耗量0.28立方米/吨铅,年节能10572.2吨标煤,年节水6.65万吨。预计未来5年市场占有率可达到50%。
二、废旧电池无害化处理技术
将回收的动力电池经拆解、检测及重组处理,最终得到一致性较好的梯次利用产品。对于无法梯次利用的废旧电池,采用焙烧、物理分选、湿法冶金联合工艺,回收镍、钴和锂等元素。适用于在用数据中心改造。钴回收率≥98.18%;镍回收率≥98.46%。某企业使用赣州市豪鹏科技有限公司技术处理约50吨废旧锂电池,循环再生镍金属量2.3吨、钴金属量0.94吨、锰金属量1.4吨、锂金属量0.47吨。预计未来5年市场占有率可达到25%。
三、分布式绿色发电技术
分布式绿色发电技术的核心是融合人工智能和大数据分析技术,分析当地负载与数据中心的用电需求。华为数字能源推出大型数据中心以及分布式绿色发电技术的融合解决方案,为数据中心提供安全、绿色能源解决方案,实现数据中心用能“绿化”。某项目使用华为技术有限公司分布式绿色发电方案,设计安装6兆瓦光伏系统,每年可提供580万千瓦时清洁电力,预计未来3年市场占有率可达到30%。
返回搜狐,查看更多
责任编辑:

我要回帖

更多关于 ps ai cdr电脑需要配置 的文章

 

随机推荐