bip-8 第h264 i帧数据解析的结果 放到 i+2 有什么好处

4739人阅读
视频编解码(及音频)(28)
/**************************************************************************************************************************************************************************************
**说明:&&&&
& &&& &&1.本文通过整理而来,集多个高手的精华,此为最重点!!!
& &&& &&2.因为在海思平台做多媒体视频处理,所以了解I帧、P帧、B帧等压缩-编解码特点是必须的。
& &&& &&3.海思I帧间隔即GOP取值范围:[0, 1000],以帧为单位,为动态属性。
& &&& &&4.欢迎拍砖。
&***************************************************************************************************************************************************************************************/
& & 视频压缩中,每帧代表一幅静止的图像。而在实际压缩时,会采取各种算法减少数据的容量,其中IPB就是最常见的。
&&& 简单地说,I帧是关键帧,属于帧内压缩。就是和AVI的压缩是一样的。P是向前搜索的意思。B是双向搜索。他们都是基于I帧来压缩数据。
&&&I帧表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)
&&&P帧表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)
&&&B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别(具体比较复杂,有4种情况),换言之,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。B帧压缩率高,但是解码时CPU会比较累~。
&&&&采用的压缩方法:&分组:把几帧图像分为一组(GOP),为防止运动变化,帧数不宜取多。
& &&& &&1.定义帧:将每组内各帧图像定义为三种类型,即I帧、B帧和P帧;
& &&& &&2.预测帧:以I帧做为基础帧,以I帧预测P帧,再由I帧和P帧预测B帧;
&& &&&&&3.数据传输:最后将I帧数据与预测的差值信息进行存储和传输。
& & I图像(帧)是靠尽可能去除图像空间冗余信息来压缩传输数据量的帧内编码图像。
&&& I帧又称为内部画面 (intra picture),I 帧通常是每个 GOP(MPEG 所使用的一种视频压缩技术)的第一个帧,经过适度地压缩(做为随机访问的参考点)可以当成图象。在MPEG编码的过程中部分视频帧序列压缩成为I帧,部分压缩成P帧,还有部分压缩成B帧。I帧法是帧内压缩法(P、B为帧间),也称为“关键帧”压缩法。I帧法是基于离散余弦变换DCT(Discrete
Cosine Transform)的压缩技术,这种算法与JPEG压缩算法类似。采用I帧压缩可达到1/6的压缩比而无明显的压缩痕迹。
&&&&I帧特点:
& &&& &&1.它是一个全帧压缩编码帧。它将全帧图像信息进行JPEG压缩编码及传输;
& &&& &&2.解码时仅用I帧的数据就可重构完整图像;
& &&& &&3.I帧描述了图像背景和运动主体的详情;
& &&& &&4.I帧不需要参考其他画面而生成;
& &&& &&5.I帧是P帧和B帧的参考帧(其质量直接影响到同组中以后各帧的质量);
& &&& &&6.I帧是帧组GOP的基础帧(第一帧),在一组中只有一个I帧;
& &&& &&7.I帧不需要考虑运动矢量;
&&&&&& 8.I帧所占数据的信息量比较大。
&&& I帧编码流程:
& &&& &&(1)进行帧内预测,决定所采用的帧内预测模式。
& &&& &&(2)像素值减去预测值,得到残差。
& &&& &&(3)对残差进行变换和量化。
& &&& &&(4)变长编码和算术编码。
& &&& &&(5)重构图像并滤波,得到的图像作为其它帧的参考帧。
&&&& P图像(帧)是通过充分降低于图像序列中前面已编码帧的时间冗余信息来压缩传输数据量的编码图像,也叫预测帧。
&&& 在针对连续动态图像编码时,将连续若干幅图像分成P,B,I三种类型,P帧由在它前面的P帧或者I帧预测而来,它比较与它前面的P帧或者I帧之间的相同信息或数据,也即考虑运动的特性进行帧间压缩。P帧法是根据本帧与相邻的前一帧(I帧或P帧)的不同点来压缩本帧数据。采取P帧和I帧联合压缩的方法可达到更高的压缩且无明显的压缩痕迹。
&&&&P帧的预测与重构:
&&&&&&& P帧是以I帧为参考帧,在I帧中找出P帧“某点”的预测值和运动矢量,取预测差值和运动矢量一起传送。在接收端根据运动矢量从I帧中找出P帧“某点”的预测值并与差值相加以得到P帧“某点”样值,从而可得到完整的P帧。
&&& P帧特点:
& &&& &&①P帧是I帧后面相隔1-2帧的编码帧。&&
& &&& &&②P帧采用运动补偿的方法传送它与前面的I或P帧的差值及运动矢量(预测误差)。&&
& &&& &&③解码时必须将I帧中的预测值与预测误差求和后才能重构完整的P帧图像。&&
& &&& &&④P帧属于前向预测的帧间编码。它只参考前面最靠近它的I帧或P帧。&&
& &&& &&⑤P帧可以是其后面P帧的参考帧,也可以是其前后的B帧的参考帧。
& &&& &&⑥由于P帧是参考帧,它可能造成解码错误的扩散。&
& &&& &&⑦由于是差值传送,P帧的压缩比较高。
& & B图像(帧)是既考虑与源图像序列前面已编码帧,也顾及源图像序列后面已编码帧之间的时间冗余信息来压缩传输数据量的编码图像,也叫双向预测帧。&&&
&&& B帧法是双向预测的帧间压缩算法。当把一帧压缩成B帧时,它根据相邻的前一帧、本帧以及后一帧数据的不同点来压缩本帧,也即仅记录本帧与前后帧的差值。只有采用B帧压缩才能达到200:1的高压缩。一般地,I帧压缩效率最低,P帧较高,B帧最高。
&&& B帧的预测与重构:
&&&&&&& B帧以前面的I或P帧和后面的P帧为参考帧,“找出”B帧“某点”的预测值和两个运动矢量,并取预测差值和运动矢量传送。接收端根据运动矢量在两个参考帧中“找出(算出)”预测值并与差值求和,得到B帧“某点”样值,从而可得到完整的B帧。
&&&&B帧特点:
& &&& &&1.B帧是由前面的I或P帧和后面的P帧来进行预测的;
& &&& &&2.B帧传送的是它与前面的I或P帧和后面的P帧之间的预测误差及运动矢量;
& &&& &&3.B帧是双向预测编码帧;
& &&& &&4.B帧压缩比最高,因为它只反映2参考帧间运动主体的变化情况,预测比较准确;
& &&& &&5.B帧不是参考帧,不会造成解码错误的扩散。&
&&& P 帧和 B 帧编码的基本流程为:
& &&& &&(1)进行运动估计,计算采用帧间编码模式的率失真函数(节)值。P 帧 只参考前面的帧,B 帧可参考后面的帧。
& &&& &&(2)进行帧内预测,选取率失真函数值最小的帧内模式与帧间模式比较,确定采用哪种编码模式。
& &&& &&(3)计算实际值和预测值的差值。
& &&& &&(4)对残差进行变换和量化。
& &&& &&(5)若编码,如果是帧间编码模式,编码运动矢量。
&&&&注:I、B、P各帧是根据压缩算法的需要,是人为定义的,它们都是实实在在的物理帧,至于图像中的哪一帧是I帧,是随机的,一但确定了I帧,以后的各帧就严格按规定顺序排列。&
四、实际应用
&&& 从上面的解释看,我们知道I和P的解码算法比较简单,资源占用也比较少,I只要自己完成就行了,P呢,也只需要解码器把前一个画面缓存一下,遇到P时就使用之前缓存的画面就好了,如果视频流只有I和P,解码器可以不管后面的数据,边读边解码,线性前进,大家很舒服。
&&&&但网络上的电影很多都采用了B帧,因为B帧记录的是前后帧的差别,比P帧能节约更多的空间,但这样一来,文件小了,解码器就麻烦了,因为在解码时,不仅要用之前缓存的画面,还要知道下一个I或者P的画面(也就是说要预读预解码),而且,B帧不能简单地丢掉,因为B帧其实也包含了画面信息,如果简单丢掉,并用之前的画面简单重复,就会造成画面卡(其实就是丢帧了),并且由于网络上的电影为了节约空间,往往使用相当多的B帧,B帧用的多,对不支持B帧的播放器就造成更大的困扰,画面也就越卡。
&&& 一般平均来说,I的压缩率是7(跟JPG差不多),P是20,B可以达到50,可见使用B帧能节省大量空间,节省出来的空间可以用来保存多一些I帧,这样在相同码率下,可以提供更好的画质。
& &在如上图中,GOP (Group of Pictures)长度为13,S0~S7 表示 8个视点,T0~T12 为 GOP的 13个时刻。每个 GOP包含帧数为视点数 GOP 长度的乘积。在该图中一个 GOP 中,包含94 个 B帧。B 帧占一个 GOP 总帧数的 90.38%。GOP 越长,B 帧所占比例更高,编码的率失真性能越高。下图测试序列 Race1 在不同 GOP 下的率失真性能对比。
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:574630次
积分:10212
积分:10212
排名:第1071名
原创:455篇
转载:271篇
评论:31条
(1)(1)(1)(14)(17)(44)(4)(1)(2)(9)(9)(2)(5)(8)(43)(135)(40)(33)(26)(41)(8)(27)(31)(39)(82)(68)(16)(29)(4)h264检测是I帧还是P帧,解决录像第一帧有马赛克问题_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
h264检测是I帧还是P帧,解决录像第一帧有马赛克问题
上传于||暂无简介
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
下载文档到电脑,查找使用更方便
还剩1页未读,继续阅读
你可能喜欢H.264编码原理以及I帧B帧P帧
-----------------------
H264是新一代的编码标准,以高压缩高质量和支持多种网络的流媒体传输著称,在编码方面,我理解的他的理论依据是:参照一段时间内图像的统计结果表明,在相邻几幅图像画面中,一般有差别的像素只有10%以内的点,亮度差值变化不超过2%,而色度差值的变化只有1%以内。所以对于一段变化不大图像画面,我们可以先编码出一个完整的图像帧A,随后的B帧就不编码全部图像,只写入与A帧的差别,这样B帧的大小就只有完整帧的1/10或更小!B帧之后的C帧如果变化不大,我们可以继续以参考B的方式编码C帧,这样循环下去。这段图像我们称为一个序列(序列就是有相同特点的一段数据),当某个图像与之前的图像变化很大,无法参考前面的帧来生成,那我们就结束上一个序列,开始下一段序列,也就是对这个图像生成一个完整帧A1,随后的图像就参考A1生成,只写入与A1的差别内容。
在H264协议里定义了三种帧,完整编码的帧叫I帧,参考之前的I帧生成的只包含差异部分编码的帧叫P帧,还有一种参考前后的帧编码的帧叫B帧。
H264采用的核心算法是帧内压缩和帧间压缩,帧内压缩是生成I帧的算法,帧间压缩是生成B帧和P帧的算法。
----------------------
序列的说明
----------------------
在H264中图像以序列为单位进行组织,一个序列是一段图像编码后的数据流,以I帧开始,到下一个I帧结束。
一个序列的第一个图像叫做 IDR
图像(立即刷新图像),IDR 图像都是 I 帧图像。H.264
引入 IDR 图像是为了解码的重同步,当解码器解码到 IDR
图像时,立即将参考帧队列清空,将已解码的数据全部输出或抛弃,重新查找参数集,开始一个新的序列。这样,如果前一个序列出现重大错误,在这里可以获得重新同步的机会。IDR图像之后的图像永远不会使用IDR之前的图像的数据来解码。
一个序列就是一段内容差异不太大的图像编码后生成的一串数据流。当运动变化比较少时,一个序列可以很长,因为运动变化少就代表图像画面的内容变动很小,所以就可以编一个I帧,然后一直P帧、B帧了。当运动变化多时,可能一个序列就比较短了,比如就包含一个I帧和3、4个P帧。
-----------------------
三种帧的说明
-----------------------
I帧:帧内编码帧
,I帧表示关键帧,你可以理解为这一帧画面的完整保留;解码时只需要本帧数据就可以完成(因为包含完整画面)
1.它是一个全帧压缩编码帧。它将全帧图像信息进行JPEG压缩编码及传输;
2.解码时仅用I帧的数据就可重构完整图像;
3.I帧描述了图像背景和运动主体的详情;
4.I帧不需要参考其他画面而生成;
5.I帧是P帧和B帧的参考帧(其质量直接影响到同组中以后各帧的质量);
6.I帧是帧组GOP的基础帧(第一帧),在一组中只有一个I帧;
7.I帧不需要考虑运动矢量;
8.I帧所占数据的信息量比较大。
P帧:前向预测编码帧。P帧表示的是这一帧跟之前的一个关键帧(或P帧)的差别,解码时需要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。(也就是差别帧,P帧没有完整画面数据,只有与前一帧的画面差别的数据)
P帧的预测与重构:P帧是以I帧为参考帧,在I帧中找出P帧“某点”的预测值和运动矢量,取预测差值和运动矢量一起传送。在接收端根据运动矢量从I帧中找出P帧“某点”的预测值并与差值相加以得到P帧“某点”样值,从而可得到完整的P帧。
1.P帧是I帧后面相隔1~2帧的编码帧;
2.P帧采用运动补偿的方法传送它与前面的I或P帧的差值及运动矢量(预测误差);
3.解码时必须将I帧中的预测值与预测误差求和后才能重构完整的P帧图像;
4.P帧属于前向预测的帧间编码。它只参考前面最靠近它的I帧或P帧;
5.P帧可以是其后面P帧的参考帧,也可以是其前后的B帧的参考帧;
6.由于P帧是参考帧,它可能造成解码错误的扩散;
7.由于是差值传送,P帧的压缩比较高。
B帧:双向预测内插编码帧。B帧是双向差别帧,也就是B帧记录的是本帧与前后帧的差别(具体比较复杂,有4种情况,但我这样说简单些),换言之,要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。B帧压缩率高,但是解码时CPU会比较累。
B帧的预测与重构
B帧以前面的I或P帧和后面的P帧为参考帧,“找出”B帧“某点”的预测值和两个运动矢量,并取预测差值和运动矢量传送。接收端根据运动矢量在两个参考帧中“找出(算出)”预测值并与差值求和,得到B帧“某点”样值,从而可得到完整的B帧。
1.B帧是由前面的I或P帧和后面的P帧来进行预测的;
2.B帧传送的是它与前面的I或P帧和后面的P帧之间的预测误差及运动矢量;
3.B帧是双向预测编码帧;
4.B帧压缩比最高,因为它只反映丙参考帧间运动主体的变化情况,预测比较准确;
5.B帧不是参考帧,不会造成解码错误的扩散。
注:I、B、P各帧是根据压缩算法的需要,是人为定义的,它们都是实实在在的物理帧。一般来说,I帧的压缩率是7(跟JPG差不多),P帧是20,B帧可以达到50。可见使用B帧能节省大量空间,节省出来的空间可以用来保存多一些I帧,这样在相同码率下,可以提供更好的画质。
--------------------------------
压缩算法的说明
--------------------------------
h264的压缩方法:
1.分组:把几帧图像分为一组(GOP,也就是一个序列),为防止运动变化,帧数不宜取多。
2.定义帧:将每组内各帧图像定义为三种类型,即I帧、B帧和P帧;
3.预测帧:以I帧做为基础帧,以I帧预测P帧,再由I帧和P帧预测B帧;
4.数据传输:最后将I帧数据与预测的差值信息进行存储和传输。
帧内(Intraframe)压缩也称为空间压缩(Spatial
compression)。当压缩一帧图像时,仅考虑本帧的数据而不考虑相邻帧之间的冗余信息,这实际上与静态图像压缩类似。帧内一般采用有损压缩算法,由于帧内压缩是编码一个完整的图像,所以可以独立的解码、显示。帧内压缩一般达不到很高的压缩,跟编码jpeg差不多。
帧间(Interframe)压缩的原理是:相邻几帧的数据有很大的相关性,或者说前后两帧信息变化很小的特点。也即连续的视频其相邻帧之间具有冗余信息,根据这一特性,压缩相邻帧之间的冗余量就可以进一步提高压缩量,减小压缩比。帧间压缩也称为时间压缩(Temporal
compression),它通过比较时间轴上不同帧之间的数据进行压缩。帧间压缩一般是无损的。帧差值(Frame
differencing)算法是一种典型的时间压缩法,它通过比较本帧与相邻帧之间的差异,仅记录本帧与其相邻帧的差值,这样可以大大减少数据量。
顺便说下有损(Lossy )压缩和无损(Lossy
less)压缩。无损压缩也即压缩前和解压缩后的数据完全一致。多数的无损压缩都采用RLE行程编码算法。有损压缩意味着解压缩后的数据与压缩前的数据不一致。在压缩的过程中要丢失一些人眼和人耳所不敏感的图像或音频信息,而且丢失的信息不可恢复。几乎所有高压缩的算法都采用有损压缩,这样才能达到低数据率的目标。丢失的数据率与压缩比有关,压缩比越小,丢失的数据越多,解压缩后的效果一般越差。此外,某些有损压缩算法采用多次重复压缩的方式,这样还会引起额外的数据丢失。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。19073人阅读
H264编码库有关的de(4)
写作背景:最近在研究H264编码器的参数,里面的参数不太懂,其中包括:
1)& 30&# i intervals& // I 帧间距
2)30&# idr intervals// idr帧间距
3)&& 0&# b frame number between 2 p-frame(0, 1, 2)
4).& 0&# min qp //最小量化步长
5).& 51&# max qp//最大量化步长
6)& 200000&# bps码率
7)& 30&# framerate(rc only)//帧率
先对简单的进行解释:
2)idr帧间距
IDR帧是视频流的“分隔符”,所有帧都不可以使用越过关键帧的帧作为参考帧。IDR帧是I帧的一种,所以它们也不参照其它帧。这意味着它们可以作为视频的搜索(seek)点。
通过这个设置可以设置IDR帧的最大间隔帧数(亦称最大图像组长度)。较大的值将导致IDR帧减少(会用占用空间更少的P帧和B帧取代),也就同时减弱了参照帧选择的限制。较小的值导致减少搜索一个随机帧所需的平均时间。
建议:默认值(fps的10倍)对大多数视频都很好。如果在为蓝光、广播、直播流或者其它什么专业流编码,也许会需要更小的图像组长度(一般等于fps)。
B帧数(Number of B-Frames):在IP帧之间可插入的B帧数量最大值,范围0~16,可以&
&&&&& #大大提高 压缩比,建议选择2
4)min qp 最小量化步长
说明:设置x264可以使用的最小量化器。量化参数越小,输出越接近输入。使用某些值时,x264的输出可以和输入看起来完全一样,虽然其实并不是精确相同的,通常就够了没有必要使用更多比特在宏块上了。
如果开启了自适应量化器(默认开启),则不鼓励提高qpmin的值,那样可能会降低帧的平坦部分的质量。
5)max qp最大量化步长
说明:qpmin的反面,设置x264可以使用的最大量化器。默认值51是H.264标准中的最大值,质量非常低。默认值51其实相当于没有设置qpmax。如果你想控制x264输出的最低品质,也许你想要把这个值调低一点(调到30-40最低了),但一般而言不推荐调节这个值。
6)码流(Data Rate)
是指视频文件在单位时间内使用的数据流量,也叫码率,是他是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。
帧率是一秒播放的视频中有多少个帧。帧是组成视频的基本单位。视频文件本身是由很多连续的图片组成,简单的可以理解为帧率就是一秒内录下的图片数量(实际上这些图片通过压缩,一帧数据不一定保存的是一个完成图片
I帧(I frame) 又称为内部画面 (intra picture),I 帧通常是每个 GOP(MPEG 所使用的一种视频压缩技术)的第一个帧,经过适度地压缩,做为随机访问的参考点,可以当成图象。在MPEG编码的过程中,部分视频帧序列压缩成为I帧;部分压缩成P帧;还有部分压缩成B帧。I帧法是帧内压缩法,也称为“关键帧”压缩法。I帧法是基于离散余弦变换DCT(Discrete Cosine Transform)的压缩技术,这种算法与JPEG压缩算法类似。采用I帧压缩可达到1/6的压缩比而无明显的压缩痕迹。
  帧是组成视频图像的基本单位。关键帧也叫I帧,它是帧间压缩编码里的重要帧;它是一个全帧压缩的编码帧;解码时仅用I帧的数据就可重构完整图像;- D% j& B. F1 8 h3 z1 l) q& S% ]% l5 nI帧不需要参考其他画面而生成。视频文件是由多个连续的图片组成。
  在视频会议系统中,终端发送给MCU(或者MCU发送给终端)的图像,并不是每次都把完整的一幅幅图片发送到远端,而只是发送后一幅画面在前一幅画面基础上发生变化的部分。如果在网络状况不好的情况下,终端的接收远端或者发送给远程的画面就会有丢包而出现图像花屏、图像卡顿的现象,在这种情况下如果没有I帧机制来让远端重新发一幅新的完整的图像到本地(或者本地重新发一幅新的完整的图像给远端),终端的输出图像的花屏、卡顿现象会越来越严重,从而造成会议无法正常进行。
  在视频会议系统中I帧只会在会议限定的带宽内发生,不会超越会议带宽而生效。I帧机制不仅存在于MCU中,电视墙服务器、录播服务器中也存在。就是为了解决在网络状况不好的情况下,出现的丢包而造成的如图像花屏、卡顿,而影响会议会正常进行。
30帧发一个I帧, 所以I帧大一点
以下来自博客:
1.什么是 IFG?(What)
IFG(Interframe Gap),帧间距,以太网相邻两帧之间的时间断;以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙,即帧间距IFG也可称其为IPG (Interpacket Gap)。IFG指的是一段时间,不是距离,单位通常用微秒(μs)或纳秒(ns)。如下图所示:
图 1 帧间距
2.为什么需要IFG?(Why)
网络设备和组件在接收一个帧之后,需要一段短暂的时间来恢复并为接收下一帧做准备。
3.IFG的大小为多少?(Importance)
IFG的最小值是 96 bit time,即在媒介中发送96位原始数据所需要的时间,在不同媒介中IFG的最小值是不一样的:
不管 10M/100M/1000M的以太网,两帧之间最少要有96bit;IFGmin=96bit/speed&& (s)
则:10Mmin: &&&&&&&& 9600 ns
&&&&& 100Mmin: &&&&&&& 960 ns
1000Mmin:&&&&&&& 96 ns
4.如何使用IFG?(How)
举个具体例子说明,IFG在以太网的流控机制中解决速度匹配问题;
这里涉及到以太网的流控机制,如下图:
图 2以太网传输示例
1)&&&& 设备1以其自身的工作时钟(OSC1) 向设备2发送到待发数据;
2)&&&& 数据包进入设备2:
a)&&&& 经过时钟数据恢复器(CDR)的处理,从数据中提取时钟,并基于提取的时钟(CLK2),将数据包存入接收缓存,此时,CLK2和OSC1是同步的;
b)&&&& 数据从接收缓存,经过上层协议的处理,存入发送缓存;
3)&&&& 发送缓存以设备2的工作时钟(OSC2)发送数据,由于以太网是异步工作的,故OSC1和OSC2作为不同设备的本地时钟,并不能做到完全同频(以太网设备的工作时钟允许有正负50ppm的频差),上图假设OSC1大于OSC2,那么设备2的接收的速度将大于发送的速度,如果接收缓冲满了,将造成丢包;
如何解决上述丢包问题?
在设备2的发送侧通过减小IFG(帧间距)来加快其发送有效数据包的速度,从而使得发送速度能跟上接收速度。
5.IFG在我们实际工作的应用?
这里主要提到Smartbit 6000C 在产测中的使用。
使用原理:
IFG增大,设备的有效速度减小,可以解决因速度过快丢包的问题;
IFG减小(但必须大于 96 bit time),设备的有效速度增大,可以解决因速度过慢导致测试超时的问题。
参考资料:
[1] 以太网流控机制及其基于VSC7323的实现.
[2] Interframe gap Wikipedia.
[3] thernet ./en/US/docs/internetworking/technology/handbook/Ethernet.pdf
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:507473次
积分:5292
积分:5292
排名:第3424名
原创:116篇
转载:21篇
评论:107条
(2)(7)(3)(3)(1)(4)(5)(6)(2)(1)(4)(5)(5)(15)(36)(31)(7)以下试题来自:
单项选择题SM-BIP-8的计算方法为对第i个OTUk帧中的OPUk帧计算BIP-8,然后将计算结果放入第()个OTUk帧的SM-BIP-8字节中。
为您推荐的考试题库
您可能感兴趣的试卷
你可能感兴趣的试题
A.SM位于OTUk开销区域,PM位于ODUk开销区域
B.SM与PM大小均为3个字节
C.SM开销与PM开销完全一样
D.SM开销及PM开销均有误码检测功能
A.便于设备从OPU2中提取STM-64信号
B.提高OPU2速率,在ODU1复用进OPU2时容纳ODU1开销
C.能够降低误码的出现,提高传输性能
D.无特殊目的
A.OTUk-AIS
B.ODUK-AIS
C.OTUk-OOM
D.OPUk-AIS
A.线路侧输出特定波长
B.要求线路侧输入也是特定波长
C.可分为终端和中继两种类型
D.可分为单向和双向

我要回帖

更多关于 怎么把电影放到ipad 的文章

 

随机推荐