NaAu(CN)2打call是什么意思么

> 【答案带解析】(1)基态铜原子的核外未成对电子数目为___________。 (2)依据第2周...
(1)基态铜原子的核外未成对电子数目为___________。(2)依据第2周期元素第一电离能的变化规律,参照右图B、F元素的位置,用小黑点标出C、N、O三种元素的相对位置。(3)NF3可由NH3和F2在Cu催化剂存在下反应直接得到:2NH3+3F2 NF3+3NH4F上述化学方程式中的5种物质所属的晶体类型有___________。(4)BF3与一定量水形成(H2O)2oBF3晶体Q,Q在一定条件下可转化为R:①晶体Q中各种微粒间的强相互作用力包括___________(填序号).a.离子键
f.范德华力②R中阳离子的空间构型为___________,阴离子的中心原子轨道采用1个2s原子轨道与___________个___________原子轨道杂化。(5)将铜粉加入浓氨水中.再通入氧气,充分反应后溶液呈深盔色(一种铜离子的配位化合物).该反应的离子方程式为___________。(6)金属铁为体心立方晶胞结构(钾型).则晶体中的配位数为___________;若晶体的密度为ρg/cm3,铁原子半径为___________cm(用含ρ和NA的代数式表示,不必化简)。 
(3)分子晶体、离子晶体、金属晶体
(4)①bc; ②三角锥形;3;2p
(5)2Cu+8 NH3oH2O+O2=2[Cu(NH3)4]2++4OH-+6H2O
(6)8;×
试题分析:(1)Cu原子核外有29个电子,基态铜原子的核外电子排布式为:1s22s22p63s23p63d104s1,未成对电子数目为1故答案为:1;
...
考点分析:
考点1:物质的结构与性质
考点2:元素周期律与元素周期表
相关试题推荐
最近,我国利用生产磷铵排放的废渣磷石膏制取硫酸并联产水泥的技术研究获得成功。已知磷灰石的主要成分是Ca3(PO4)2。具体生产流程如下:回答下列问题:(1)装置a用磷酸吸收NH3.若该过程在实验室中进行,请画出装置a的示意图.___________;(2)热交换器是实现冷热交换的装置.化学实验中也经常利用热交换来实现某种实验目的,如气、液热交换时通常使用的仪器是___________;(3)依题意猜测固体A中一定含有的物质的化学式是___________(结晶水部分不写).(4)利用生产磷铵排放的废渣磷石膏制取硫酸,其中SO2生产硫酸的工艺流程图如图所示:①在A处二氧化硫被氧化成三氧化硫,设备A的名称是___________,设备A中发生反应的化学方程式是___________,为提高三氧化硫的产率,该处应采用___________(填“等温过程”或“绝热过程”)为宜。②在D处进行二次催化处理的原因是___________;③B处气体混合物主要是氮气和三氧化硫。此时气体经过C后不立即进入D是因为:___________;④20%的发烟硫酸(SO3的质量分数为20%)1吨需加水___________吨(保留2位有效数字)才能配制成98%的成品硫酸。(5)制硫酸所产生的尾气除了含有N2、O2外,还含有SO2、微量的SO3和酸雾.能用于测定硫酸尾气中SO2含量的是___________(选填字母)A.NaOH溶液、酚酞试液
B.KMnO4溶液、稀H2SO4C.碘水、淀粉溶液
D.氨水、酚酞试液 
碳、氮、硫是中学化学重要的非金属元素,在工农业生产中有广泛的应用.(1)用于发射“天宫一号”的长征二号火箭的燃料是液态偏二甲肼(CH3)2N-NH2,氧化剂是液态四氧化二氮.二者在反应过程中放出大量能量,同时生成无毒、无污染的气体.已知室温下,0.1mol燃料完全燃烧释放出的能量为255kJ,请写出该反应的热化学方程式___________;(2)298K时,在2L的密闭容器中,发生可逆反应2NO2(g)N2O4(g)△H=-a kJomol-1 (a>0).N2O4的物质的量浓度随时间变化如图1.达平衡时,N2O4的浓度为NO2的2倍,回答下列问题.①298k时,该反应的平衡常数为___________;②若反应在398K进行,某时刻测得n(NO2)=0.6mol n(N2O4)=1.2mol,则此时V(正)___________V(逆)(填“>”、“<”或“=”).③在温度为T1、T2时,平衡体系中NO2的体积分数随压强变化曲线如图2所示。下列说法正确的是___________a.A、C两点的反应速率:A>C b.B、C两点的气体的平均相对分子质量:B=Cc.A、C两点气体的颜色:A深,C浅
d.由状态B到状态A,可以用加热的方法(3)NH4HSO4在分析试剂、医药、电子工业中用途广泛.现向100mL 0.1moloL-1NH4HSO4溶液中滴加0.1moloL-1NaOH溶液,得到的溶液pH与NaOH溶液体积的关系曲线如图3所示.试分析图中a、b、c、d、e五个点,①水的电离程度最大的是___________,理由是___________;②其溶液中c(OH-)的数值最接近NH3oH2O的电离常数K数值的是___________;③在c点,溶液中各离子浓度由大到小的排列顺序是___________。 
氰化钠(NaCN)是重要的化工原料,常用于化学合成、冶金工业等.回答下列问题:(1)可用纯碱、焦炭、氨气反应制取 NaCN,同时还有水生成,写出反应的化学方程式,并标明电子转移的方向和数目______________;(2)现代采金技术先以NaCN溶液在自然环境中浸取粉碎的含金(Au)矿石,得到 Na[Au(CN)2](二氰合金酸钠)溶液,再用锌还原 Na[Au(CN)2]生成金,“浸取”反应的还原产物是______________;(3)下图为用含NaCN的废水合成黄血盐(K4Fe(CN)6)的主要工艺流程如图:已知相同温度下溶解度:Na4Fe(CN)6>K4Fe(CN)6① 实验室用NaCN固体配制NaCN溶液时,应先将其溶于______________溶液,再用蒸馏水稀释。②在转化罐中发生反应的化学方程式为______________。③加入碳酸钠溶液主要目的是______________。④“操作”环节具体为______________。(4)CN -可以造成水体污染,某小组用如下方法对此污水进行处理如下图装置模拟电化学法处理CN -,有关结果见表.实验序号电极(X)NaCl溶液浓度(mol/L)甲中石墨表面通人气体电流计读数(A)(1)Fe0.l空气I(2)Al0.1空气1.5Ⅰ(3)Fe0.1022Ⅰ(4)Al0.5空气1.6Ⅰ①若乙池中石墨(I)极产生无毒无害的物质,其电极反应式为___________;②该实验表明电化学法处理CN -时,影响处理速率的因素有___________、___________(任答两点) 
某研究性学习小组以甲酸为原料在实验室完成了一氧化碳和甲酸铜两种物质的制备实验。实验一、用甲酸制备一氧化碳CO的制备原理:HCOOHCO↑+H2O,制备装置如下图(其中夹持仪器、加热仪器没有画出)(1)b仪器的名称为___________,c的作用是___________。(2)制备CO时,浓硫酸与甲酸的混合方式是___________。实验二、用甲酸制备甲酸铜[Cu(HCOO)2o4H2O]步骤一:碱式碳酸铜的制备步骤二:甲酸铜的制备将产品碱式碳酸铜放入烧杯内,加入约20mL蒸馏水,加热搅拌至323K左右,逐滴加入适量甲酸至沉淀完全溶解,趁热过滤,滤液在通风橱下蒸发至原体积的左右,冷却至室温,减压过滤,洗涤,得Cu(HCOO)2o4H2O产品,称量,计算产率。回答下列问题:(3)在制备碱式碳酸铜的过程中,如果温度过高,对产物有何影响?___________。(4)步骤二中碱式碳酸铜滴入甲酸生成四水合甲酸铜的化学方程式为___________。(5)本实验涉及三种固液分离的方法.①倾析法使用到的仪器有___________;②采用减压过滤的装置对步骤二中溶解后的溶液进行趁热过滤;③步骤二的实验中,需用到下列装置___________(6)最终称量所得的产品为7.91g,则产率为___________。 
盐酸、醋酸、碳酸钠和碳酸氢钠是生活中常见的物质,下列表述正确的是(
)A.NaHCO3溶液中存在:c(OH-)=c (H+)+c (H2CO3)B.25℃时,将pH=2的盐酸与pH=12的氨水混合后,溶液呈中性,则消耗溶液的体积:V(盐酸)<V(氨水)C.pH相等的盐酸和CH3COOH溶液稀释到相同的pH,盐酸稀释的倍数大D.将0.2mol/L的NaHCO3溶液和的醋酸钠溶液等体积混合,溶液中存在:c(Na+)=c(CH3COOH)+c(CH3COO-)+c(CO32-)+c(HCO3-) +c(H2CO3) 
题型:填空题
难度:简单
Copyright @
满分5 学习网 . All Rights Reserved.June[Article];物理化学学报(WuliHuaxueXuebao);ActaPhys.-Chim.Sin.2012,;doi:10.3866/PKU.WHXB;www.whxb.;Au12M(M=Na,Mg,Al,Si,P,S,;赵高峰*;王银亮;孙建敏;王渊旭;(河南大学计算材料科学研究所,河南开封47500
June[Article]物理化学学报(WuliHuaxueXuebao)ActaPhys.-Chim.Sin.),doi:10.3866/PKU.WHXB1355www.whxb.Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇的结构、稳定性和电子性质赵高峰*王银亮孙建敏王渊旭(河南大学计算材料科学研究所,河南开封475004)摘要:采用基于密度泛函理论的第一性原理方法系统地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇的结构、稳定性和电子性质.对团簇的平均结合能、镶嵌能、垂直离化势、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的能级差、电荷布居分析、自然键轨道(NBO)进行了计算和讨论.对于Au12M(M=Na,Mg,Al)团簇,它们形成了内含M原子的最稳定的笼状结构.然而对于Au12M(M=Si,P,S,Cl)团簇,它们却形成了以M元素为顶点的稳定锥形结构.在这些团簇中发现Au12S团簇相对是最稳定的,这是由于Au12S团簇形成了稳定的满壳层的电子结构.自然电荷布居分析表明:对于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇电荷总是从Au原子转向M原子.自然键轨道和HOMO分析表明Au12M团簇中发生了Au原子的s-d轨道和M原子的p轨道间的杂化现象.关键词:密度泛函理论;团簇;自然电荷布居分析;稳定性;自然键轨道分析O641中图分类号:Geometries,StabilitiesandElectronicPropertiesofAu12M(M=Na,Mg,Al,Si,P,S,Cl)ClustersZHAOGao-Feng*WANGYin-LiangSUNJian-MinWANGYuan-Xu(InstituteofComputationalMaterialsScience,HenanUniversity,Kaifeng475004,HenanProvince,P.R.China)Abstract:Thegeometries,stabilities,andelectronicpropertiesofAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersweresystematicallyinvestigatedbyusingfirst-principlescalculationsbasedondensityfunctionaltheory(DFT).Foreachcluster,theaveragebindingenergy,theembeddingenergy,theverticalionizationpotential,theenergygapbetweenthehighestoccupiedmolecularorbital(HOMO)andthelowestunoccupiedmolecularorbital(LUMO),thenaturalchargepopulationanalysis,andthenaturalbondorbitalanalysis(NBO)werecalculated.Thelowest-energystructuresofAu12M(M=Na,Mg,Al)clustersarecageswithMencapsulatedinthecenter,whilestructuresofAu12M(M=Si,P,S,Cl)clustersarepyramidalwithMattheapex.TheAu12Scluster,havingthefullclosed-shells,isthemoststable.Furthermore,fromthenaturalpopulationanalysis,itfollowsthatchargestransferfromAutoMinalltheclusters.TheNBOandHOMOanalysesrevealthathybridizationoccursbetweentheAus-dorbitalsandtheMporbitals.KeyWords:DenCNaturalbondorbitalanalysisNaturalcharSReceived:February14,2012;Revised:April5,2012;PublishedonWeb:April6,2012.?Correspondingauthor.Email:zgf@;Tel:+86-378-3881602.TheprojectwassupportedbytheNationalNaturalScienceFoundationofChina()andNaturalScienceFoundationofEducationDepartmentofHenanProvince,China().国家自然科学基金()和河南省教育厅自然科学基金()资助项目?EditorialofficeofActaPhysico-ChimicaSinica1356ActaPhys.-Chim.Sin.2012Vol.281IntroductionDuringthepasttwodecades,coinagemetalclustershavebeenintensivelystudiedbybothexperimentalandtheoreticalmethods.Clusteringoccursduetothefacilehybridizationofcored-electronswithouters-electrons.Goldclustershavebeenofparticularinterest.Recently,Bulusuetal.1reportedevi-denceofhollowcagesofpuremetalatoms.AnovelAu20tetra-hedralstructureidentifiedbyphotoelectronspectroscopycorre-lateswithrelativisticdensityfunctionaltheory(DFT)calcula-tions.2FaandDong3identifiedastabletube-likeAun(n=26-28)clusterwithscalar,relativistic,all-electronDFT.High-lystable“goldenfullerene”Au32andAu42clustershavebeenre-ported,4,5andcore-shellstructureshavebeenverifiedbyrecentstudiesonAu34andAu58clusters.6-8Theexistenceofthesehigh-symmetryclustersisattributedtothemanifestationofau-rophilicity,whichcanfurtherenhancestronggold-goldinter-actions.9Inaddition,relativistic-effect-enhanceds-dhybridiza-tionands-electrondelocalizationmayalsoreflecttheprefer-enceforhigh-symmetrystructures.10-12Dopingofgoldclusterswithimpurityatomsisexpectedtoopenupnewchannelsinwhichonecantailorpropertiesbyvaryingthenatureofthedopantatom.13-15SincePykko16andLi17etal.firstreportedtheexistenceofhighlystableAu12Wviaphotoelectronspectroscopy,aconsiderableamountofexperi-mentalandtheoreticalworkhasbeencarriedoutonAuclus-tersdopedwithotherimpurityatoms.11,18-34Mostofthesestud-ieshavefocusedonAu12dopedwithtransition-metal(TM)at-oms.ThehighIhorOhsymmetryofthelowest-energyAu12TMclustersisattributedtothestrongrelativisticeffect,aurophilicattraction,and18-electronbondingtothe4s,5s,and6sshellsofthecentralheteroatom.16,35Furthermore,Au12TMclustersaremorestablerelativetoicosahedralAu12andAu13cages,asveri-fiedbypreviousexperimental17andtheoretical11results.Itisthusclearthattheground-stategeometriesofAu12TMclustersareicosahedraloroctahedral,thereasonbeingthatTMatomspossessouterselectronshells.Althoughanum-berofstudieshavefocusedonthegeometricstructuresandelectronicpropertiesofAu12TMclusters,therehavebeenrela-tivelyfewstudiesongoldclustersdopedwithnon-transitionelements.24,25,36-42Inthispaper,weperformfirst-principlesstud-iesofsingleatomimpuritieswith3sand3pelectronsinAu12clusters.TheseimpurityatomscomefromthesamerowofthePeriodicTable,thustheirprinciplequantumnumbersremainthesamewhilehavinganincreasingnumberofvalenceelec-trons.WhentheseatomsareembeddedinAu12clusters,howev-er,therearecleardifferencesintheirlowest-energyAu12Mstructures.2ComputationaldetailsAllcomputationswereperformedbyDFTwiththeunre-strictedB3LYPexchange-correlationpotential43-48andtheeffec-tivecorepotentialstandardLanL2DZbasissets.49-51Thestan-dardLanL2DZbasissetsareeffectiveincalculatingnoblemet-alsbecausetheyreducedifficultiesintwo-electronintegralcal-culationscausedbytheheavyatoms.CalculationswereperformedwiththeGaussian03programpackage.52Foreachstationarypointofacluster,thestabilitywasexaminedbycalculatingtheharmonicvibrationalfrequen-cies.Ifanimaginaryfrequencywasfound,arelaxationalongthecoordinatesoftheimaginaryvibrationalmodewascarriedoutuntilatruelocalminimumwasobtained.Therefore,alliso-mersforeachclusterareguaranteedtobethelocalminimum.Inaddition,forthegeometryoptimizationofeachisomer,thespinmultiplicity(SM)wasatleast1,3,and5foreven-electronclusters(Mg,Si,S,)and2,4,and6forodd-electronclusters(Al,P,Cl).IfthetotalenergydecreaseswithincreasingSM,wewoulduseahigherspinstateuntiltheenergyminimumwasfound.Inordertotestthevalidityofthecomputationalmethod,weperformedcalculationsonAu2andAuAldimers.AsillustratedinTable1,ourresultsareingoodagreementwithpreviousex-perimentalandtheoreticaldata.25,53-593Resultsanddiscussion3.1StructuresofclustersWeexaminedaconsiderablenumberoflow-lyingisomersanddeterminedthelowest-energystructuresforAu12M(M=Na,Mg,Al,Si,P,Cl)clustersthatareillustratedinFig.1.Forcomparison,theicosahedralandoctahedracagesforpureAu13clustersarealsoinFig.1.Inordertoexplainthestructuralfea-turesoftheselowest-energystructures,welistthepointgroupsymmetry,thesmallestbondlengthforAu-AuandAu-M,andthespinmultiplicityinTable2.Previousstudiesindicatethattheground-statestructuresofAu12TMclustershaveTMencapsulatedinthecenterofAu12icosahedraloroctahedralcageswithhighIhorOhsymme-try.11,16,17,26,27Inourwork,thelowest-energystructuresofAu12M(M=Na,Mg)clustersaresimilartotheoctahedralstructuresofAu12TMclusters.However,theotherAu12M(M=Al,Si,P,S,Cl)structuresdifferfromtheAu12TMstructures.ThegroundstateoftheAu12Naclusterisanoctahedralstruc-turewiththeNaatomatitscenter,withD3dsymmetry,andaspinmultiplicityof2.TheicosahedralstructurealsohastheNaatomintheAu12however,itsenergyis1.36eVTable1Bondlengths(R),lowestharmonicvibrationalfrequencies(Freq),averagebindingenergies(Eb),andverticalionizationpotentials(VIPs)forthegroundstatesofAu2andAuAldimersDimerMethodR/nmEb/eVVIP/eVFreq/cm-1Aua2B3LYP/LanL2DZ0..43162.2GGA/PW91530.PBE/SDD250.66expt.54-560.2472.299.20±0.21191AuAlB3LYP/LanL2DZa0..01288.6PBE/SDD250..2expt.57-590.23391.67333aourcalculationNo.6ZHAOGao-Fengetal.:Geometries,StabilitiesandElectronicPropertiesofAu12MClusters1357Fig.1Equilibriumgeometriesofthelowest-energystructuresandlow-lyingisomersforpureAu13andAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersAlltheatomswithoutlabelsareAuatoms.higherthanthegroundstate.Intheoctahedralstructure,theshortestbondlengthsofAu-AuandAu-Naare0.284and0.291nm,respectively,whiletheshortestbondlengthsofAu-AuandAu-Naare0.297and0.283nm,respectively,fortheicosahedralstructure.WhenanMgatomimbedsintheAu12cluster,italsoformsanoctahedralstructurewiththeMginthecenter.However,thesymmetry(Oh)ofAu12Mgishigherthanthat(D3d)ofAu12NabecausealltheAu―AuandAu―Mgbondlengthsarethesame(0.288nm).Thenexthigherenergyiso-merAu12Mg(b)inFig.1hasS4pointgroupsymmetrywithanenergyveryclosetotheground-statestructure(ΔE=0.59eV).Recently,thegeometricandelectronicstructuresofclusterswithacentral3d,4d,and5dtransition-metalatomencapsulat-edinanAu12cagehavebeeninvestigated.11,26Forencapsulated3dand4dtransition-metals,theicosahedralclusterstendtobemorestablethantheiroctahedralisomers.Butfor5dtransition-metals,theoctahedralclusterstendtobemorestablethantheirTable2Geometriesofthelowest-energyisomersofAu12M(M=Na,Mg,Al,Si,P,S,Cl)andAu13clustersClusterAu13Au12NaAu12MgAu12AlAu12SiAu12PAu12SAu12ClSymIhD3dOhD2hCsC4vC1C2RAu-Au/nm0.80.70.0.80.90.272RAu-M/nmSMSymisthepoint-groupsymmetry,SMdenotesspinmultiplicity,andRAu-MandRAu-AurepresenttheshortestAu-MandAu-Aubondlengths,respectively.icosahedralisomers(exceptforAu12W).Theoctahedralstruc-turesofAu12NaandAu12Mgaremorestablethantheiricosahe-dralisomers.Thustheirgroundstatestructuresaresimilartotheclusterswithacentral5dtransition-metal(exceptforAu12W),buttheydifferfromthosewith3d,4dtransition-metalimpurities.InthecaseofAu12Al,theground-statestructurecanbeseenasadeformedoctahedronwithD2hsymmetry.Al-thoughtheAlatomremainsatthecenter,theouterAu12octahe-dralcageundergoesseveredeformation.Thefirstimportantchangeoccursinthelowest-energystruc-tureofAu12Si,wheretheSiatomisnowlocatedatthetopofapyramidformedbytheAuatoms.Thepyramidalstructurepos-sessesCssymmetryandaspinmultiplicityof1.ThefactthattheSiatomisnotencapsulatedintheAu12cageasforAu12NaandAu12Mgmaybeduetothebondingpropertiesandtheorbit-alhybridizationbetweenMandAuatoms.TheoctahedralAu12Siclusterhasanenergythatis1.45eVhigherthanthepy-ramidalisomer.Theground-statestructureofAu12Pisalsoapyramid,howeverithashighersymmetry(C4v)comparedtoAu12Si.TheshortestbondlengthsofAu-PandAu-Auare0.257and0.279nm.AsshowninFig.1,theAu12PclusterismorecompactthanAu12Si,whichmaybeattributedtodifferentAu-SiandAu-Pbondings.Thelowest-energystructureforAu12Sisanirregularflatpyr-amidwithlowsymmetry(C1),withtheSatomatthebottom(Fig.1).ItisthusmoreflatandextendedthanAu12PandAu12Si.ItcanbearguedthatthestructureofAu12Sresultsfromelec-trondelocalizationoveralltheatoms.Surprisingly,aplanarrhombicstructureofAu12Sisalsoobserved,wheretheSatomActaPhys.-Chim.Sin.2012Vol.28Fig.2Averagebindingenergies(Eb)ofground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)andAu13clustersoccupiesthecenteroftheplane.However,itsenergyis1.38eVhigherthantheground-statestructure.Finally,wenotethattheAu12Clclusterhasalowest-energystructurethatisbasket-likewiththeClatomattheapex.3.2StabilitiesofclustersTheaveragebindingenergy(Eb)ofagivenclusterisamea-sureofitsthermodynamicstability,whichisdefinedasthedif-ferencebetweentheenergysumofallthefreeatomsconstitut-ingtheclusterandthetotalenergyofthecluster,asgivenby:Eb(Au12M)=[ET(M)+12ET(Au)-ET(Au12M)]/13(1)whereET(M),ET(Au),andET(Au12M)representthetotalener-giesofthelowest-energyM,Au,andAu12M,respectively.AsseenfromFig.2,theEbforthegroundstatesofAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersarehigherthanthatofthepureAu13cluster.TheAu12Scluster,possessingthelargestEb,isalsofoundtobethemoststableunderstudy.Thisisattributedtotheclosed-shell(18-electronshell-filling)rule,withoneelec-tronfromeachAuatomandsixelectronsfromtheSatom.TofurtherunderstandthestabilitiesofAu12Mclusters,wewilldiscusstheembeddingenergy(Ed)oftheground-statestructure,whichisdefinedas:Ed(Au12M)=ET(M)+ET(Au12)-ET(Au12M)(2)whereET(M),ET(Au12),andET(Au12M)representthetotalener-Fig.3Embeddingenergiesofground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)andAu13clustersFig.4HOMO-LUMOenergygapsinground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)andAu13clustersgiesofthelowest-energyM,Au12,andAu12Mclusters,respec-tively.AsshowninFig.3,Au12Spossessesthehighestembed-dingenergyamongAu12M(M=Na,Mg,Al,Si,P,S,Cl)clus-ters.Hence,Au12Sshouldbethemoststable.Theenergygapbetweenthehighestoccupiedmolecularor-bitalandthelowestunoccupiedmolecularorbital(HOMO-LUMO)isausefulquantitywhenexaminingthechemicalsta-bilityofclusters.Alargeenergygapcorrelateswithahighbarrierrequiredtoperturbtheelectronicstructure.HOMO-LUMOenergygapsforground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)andAu13clustersaredisplayedinFig.4.Thelarg-estenergygap(1.73eV)isforAu12Mg,whichindicatesthatitisthemostchemicallystableoftheseclusters.Meanwhile,Au12Shasthesecondhighestenergygap,andsinceithasthelargestaveragebindingenergyamongtheseclusters,itisbothchemicallyandthermodynamicallystable.Theverticalionizationpotential(VIP)isyetanotherparame-terusedtoassessthechemicalstabilityofsmallclusters,andisgivenby:VIP=ET(Au12M+)-ET(Au12M)(3)whereET(Au12M+)isthetotalenergyoftheionicclustersattheoptimizedneutralgeometry.LargeVIPsindicatehighchemicalstability.AsshowninFig.5,theVIPsofAu12Mg,Au12Si,and5VIPofground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersNo.6ZHAOGao-Fengetal.:Geometries,StabilitiesandElectronicPropertiesofAu12MClusters1359Au12SclustersaresurprisinglyhigherthanthoseforAu12Na,Au12Al,Au12P,andAu12Cl.ThistrendmaybeattributedtorecallthatAu12Mg,Au12Si,andAu12Spos-sesselectronsinclosed-shells,whiletheotherfourhaveelec-tronsinopen-shells.ItindicatesthatAu12M(M=Mg,Si,S)clustersarechemicallymorestablethantheotherAu12M(M=Na,Al,P,Cl)clusters.Additionally,theVIPofAu12Sisthelargestinthisseries,whichcanbeexplainedonthebasisofitsfullclosed-shells(18-electronrule).603.3ElectronicpropertiesCharge-transferphenomenaintheAu12Mclusterscanbeob-tainedbynaturalpopulationanalysis.TheatomicchargesoftheMatomsintheground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersarelistedinTable3,whereweseethatchargesalwaystransferfromtheAuatomstotheelectron-acceptingMatoms.ThisclearlydiffersfromthatobservedforAu5MandAu6M(M=Na,Mg,Al,Si,P,S,Cl)clusters.24,25Thusanimpor-tantfindingisthatthedirectionofcharge-transferinM-dopedgoldclustersdependsonclustersize.Table3NaturalchargepopulationandtheelectronconfigurationsforMatomsinAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersthroughnaturalbondorbital(NBO)analysisClusterCharge/eElectronconfigurationAu12Na-1.131Na[core]3s0.343p1.784s0.014p0.01Au12Mg-0.895Mg[core]3s0.403p2.484s0.014p0.01Au12Al-0.444Al[core]3s0.823p2.574s0.014p0.04Au12Si-0.025Si[core]3s1.373p2.644p0.01Au12P-0.290P[core]3s1.733p3.554p0.01Au12S-0.404S[core]3s1.773p4.634p0.01Au12Cl-0.412Cl[core]3s1.893p5.52Fig.6Spatialorientationofthehighestoccupiedmolecularorbitalsoftheground-stateAu12M(M=Na,Mg,Al,Si,P,S,Cl)clustersToexaminehybridizationbetweenM(M=Na,Mg,Al,Si,P,S,Cl)atomsandAuinAu12Mclusters,wepresentinTable3thenaturalelectronconfigurationsobtainedfromnaturalbondorbital(NBO)analysis.ThevalenceelectronconfigurationsofthefreeatomsNa,Mg,Al,Si,P,S,andClare3s1,3s2,3s23p1,3s23p2,3s23p3,3s23p4,and3s23p5,respectively.TheNBOanaly-sisinTable3reflectsthiss-phybridization,whereelectronstransfermainlyfrom3sto3porbitalsintheMatoms.Wealsonotethatelectronstransferfrom6sand5dorbitalsto6porbit-alsintheAuatoms,indicatingsd-phybridization.Sincethe3porbitalgainsmorethanthe3sorbitallosesintheMatoms,itfollowsthatthe6sand5dorbitalsintheAuatomstransferelec-tronstotheM3porbital.Thushybridizationdoesoccurbe-tweentheporbitaloftheMatomandthes-dorbitalsoftheAuatoms.Inordertofurtherunderstandthechemicalbondsinthesesystems,weplotinFig.6thespatialorientationoftheHOMOenergylevelsfortheAu12Mclusters.TheHOMOsshowhybridizationphenomenabetweenporbitalsoftheMat-omsandthes-dorbitalsoftheAuatoms.ThesepicturesareingoodagreementwiththeNBOanalysis.However,thehybrid-izationofAu12MclustersdiffersfromthatinAu12TM,11whichisattributedtotheelectronicpropertiesofthedopantatoms.4SummaryWehavecarriedoutafirst-principlesinvestigationusingDFTtosystematicallystudythegeometriesandelectronicpropertiesofAu12M(M=Na,Mg,Al,Si,P,S,Cl)clusters.TheAu12M(M=Na,Mg,Al)clustersformthelowest-energycagestructureswiththeMatomencapsulatedinthecenter,whileAu12M(M=Si,P,S,Cl)clustersformpyramidswiththeMat-omattheapex.Thelowest-energygeometriesofAu12M(ex-ceptAu12NaandAu12Mgclusters)aredifferentfromthehighsymmetrystructureof3d,4d,and5dtransition-metalsinAu12TMclusters.Thisindicatesthatimpurityatomsplayacriti-calroleindeterminingthestructuresandpropertiesofAu12Mclusters.TheAu12Scluster,havingfullclosed-shellorbitals,notonlypossessesarelativelyhighaveragebindingenergyanddopingenergy,butalsoahighVIPandHOMO-LUMOenergygap.ThusitismorestablethantheotherAu12Mclusters.Final-ly,wenotethatanNBOanalysisrevealsthathybridizationbe-tweenthes-dorbitalsinAuatomsandtheporbitalsoftheMimpuritiesoccursinAu12Mclusters.References(1)Bulusu,S.;Li,X.;Wang,L.S.;Zeng,X.C.Proc.Natl.Acad.Sci.U.S.A.6.(2)Li,J.;Li,X.;Zhai,H.J.;Wang,L.S.Science.(3)Fa,W.;Dong,J.M.J.Chem.Phys.310.(4)Johansson,M.P.;Sundholm,D.;Vaara,J.Angew.Chem.Int.Edit.8.(5)Gao,Y.;Zeng,X.C.J.Am.Chem.Soc.8.(6)Gu,X.;Bulusu,S.;Li,X.;Zeng,X.C.;Li,J.;Gong,X.G.;Wang,L.S.J.Phys.Chem.C8.1360ActaPhys.-Chim.Sin.2012Vol.28(7)Huang,W.;Ji,M.;Dong,C.D.;Gu,X.;Wang,L.M.;Gong,X.G.;Wang,L.S.ACSNano.(8)Dong,C.D.;Gong,X.G.J.Chem.Phys.301.(9)Scherbaum,F.;Grohmann,A.;Huber,B.;Krueger,C.;Schmidbaur,H.Angew.Chem.2.(10)Pyykko,P.Chem.Rev..(11)Wang,S.Y.;Yu,J.Z.;Mizuseki,H.;Sun,Q.;Wang,C.Y.;Kawazoe,Y.Phys.Rev.B413.(12)Hakkinen,H.;Moseler,M.;Kostko,O.;Morgner,N.;Hoffmann,M.A.;Issendorff,B.V.Phys.Rev.Lett401.(13)Yu,Y.J.;Wang,H.Y.;Yang,C.L.;Chen,J.N.ActaPhys.-Chim.Sin..[于永江,王华阳,杨传路,陈建农.物理化学学报,.](14)Qian,H.F.;Barry,E.;Zhu,Y.;Jin,R.C.ActaPhys.-Chim.Sin..(15)Liang,W.H.;Wang,X.L.;Ding,X.C.;Chu,L.Z.;Deng,Z.C.;Fu,G.S.;Wang,Y.L.ActaPhys.-Chim.Sin.5.[梁伟华,王秀丽,丁学成,立志,邓泽超,傅广生,王英龙.物理化学学报,5.](16)Pykko,P.;Runeberg,N.Angew.Chem.4.(17)Li,X.;Kiran,B.;Li,H.;Zhai,H.J.;Wang,L.S.Angew.Chem.Int.Edit.6.(18)Chen,M.X.;Yan,X.H.J.Chem.Phys.305.(19)Heinebrodt,M.;Malinowski,N.;Tast,F.;Branz,W.;Billas,I.M.L.;Martin,T.P.J.Chem.Phys.5.(20)Huang,W.;Wang,L.S.Phys.Rev.Lett.401.(21)Wang,L.M.;Pal,R.;Huang,W.;Zeng,X.C.;Wang,L.S.J.Chem.Phys.306.(22)Ferrighi,L.;Hammer,B.;Madsen,G.K.H.J.Am.Chem.Soc.05.(23)Zhang,M.;He,L.M.;Zhao,L.X.;Feng,X.J.;Luo,Y.H.J.Phys.Chem.C1.(24)Majumder,C.K.;Kandalam,A.K.;Jena,P.Phys.Rev.B2006,74,205437.(25)Zhang,M.;Chen,S.;Deng,Q.M.;He,L.M.;Zhao,L.N.;Luo,Y.H.Eur.Phys.J.D.(26)Long,J.;Qiu,Y.X.;Chen,X.Y.;Wang,S.G.J.Phys.Chem.C46.(27)Zhai,H.J.;Li,J.;Wang,L.S.J.Chem.Phys.9.(28)Gao,Y.;Bulusu,S.;Zeng,X.C.ChemPhysChem5.(29)Li,X.;Kiran,B.;Cui,L.F.;Wang,L.S.Phys.Rev.Lett.2005,95,253401.(30)Yang,A.P.;Fa,W.;Dong,J.M.J.Phys.Chem.A,4031.(31)Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.ACSNano2008,2,341.(32)Wang,L.M.;Bai,J.;Lechtken,A.;Huang,W.;Schooss,D.;Kappes,M.M.;Zeng,X.C.;Wang,L.S.Phys.Rev.B413.(33)Neukermans,S.;Janssens,E.;Tanaka,H.;Silverans,R.E.;Lievens,P.Phys.Rev.Lett.401.(34)Walter,M.;Hakkinen,H.Phys.Chem.Chem.Phys.2006,8,5407.(35)Autschbach,J.;Hess,B.A.;Johansson,M.P.;Neugebauer,J.;Patzschke,M.;Pyykko,P.;Reiher,M.;Sundholm,D.Phys.Chem.Chem.Phys..(36)Zhao,L.X.;Cao,T.T.;Feng,X.J.;Liang,X.;Lei,Y.M.;Luo,Y.H.J.Mol.Struct.-Theochem.(37)Graciela,B.P.;Ignacio,L.G.J.Mol.Struct.-Theochem2002,619,79.(38)Banerjee,A.;Ghanty,T.K.;Chakrabarti,A.;Kamal,C.J.Phys.Chem.C.(39)Chen,D.D.;Kuang,X.Y.;Zhao,Y.R.;Shao,P.;Li,Y.F.Chin.Phys.B601.(40)Li,Y.F.;Kuang,X.Y.;Wang,S.J.J.Phys.Chem.A,11691.(41)Jayasekharan,T.;Ghanty,T.K.J.Phys.Chem.C,8787.(42)Zhao,L.X.;Feng,X.J.;Cao,T.T.;Liang,X.;Luo,Y.H.Chin.Phys.B9.(43)Becke,A.D.J.Chem.Phys.4.(44)Becke,A.D.J.Chem.Phys.7.(45)Becke,A.D.J.Chem.Phys.3.(46)Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B.(47)Becke,A.D.J.Chem.Phys.8.(48)Kohn,W.;Sham,L.J.Phys.Rev.A3.(49)Hay,P.J.;Wadt,W.R.J.Chem.Phys..(50)Hay,P.J.;Wadt,W.R.J.Chem.Phys..(51)Wadt,W.R.;Hay,P.J.J.Chem.Phys..(52)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;etal.Gaussian03,RevisionB.03;GaussianInc.:Pittsburgh,PA,2003.(53)Zhao,G.F.;Zeng,Z.J.Chem.Phys.303.(54)Morse,M.D.Chem.Rev.9.(55)Negishi,Y.;Nakamura,Y.;Nakajima,A.;Kaya,K.J.Chem.Phys.7.(56)Simard,B.;Hackett,P.A.J.Mol.Spectrosc..(57)Gingerich,K.A.;Blue,G.D.J.Chem.Phys..(58)Ho,J.;Ervin,K.;Lineberger,W.J.Chem.Phys.7.(59)Taylor,K.;Pettitte-Hall,C.;Cheshnovsky,O.;Smalley,R.J.Chem.Phys.9.(60)Tomlman,C.A.Chem.Soc.Rev..三亿文库包含各类专业文献、文学作品欣赏、外语学习资料、幼儿教育、小学教育、Au12M (M=Na, Mg, Al, Si, P, S, Cl)团簇的结构、稳定性和电子性质30等内容。 
 Au12M (M=Na, Mg, Al, S... 6页 7下载券 Si和Cl的方程式 2页 1下载...性质稳定。 Si +2F2 == SiF4(气态), Si + 4HF == SiF4 +2 H2, Si ...

我要回帖

更多关于 吃鸡是什么游戏 的文章

 

随机推荐