有没有聚类算法可以cad等分点怎么捕捉

他的最新文章
他的热门文章
您举报文章:
举报原因:
原文地址:
原因补充:
(最多只允许输入30个字)豆丁微信公众号
君,已阅读到文档的结尾了呢~~
基于向量空间模型和LDA模型相结合的微博客话题发现算法的研究与,基于,研究,微博客,LDA模型,相结合,模型和,微博客话题,模型相结合,话 题发现
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
基于向量空间模型和LDA模型相结合的微博客话题发现算法的研究
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口聚类分析算法---学习 - 毛无语666 - 博客园
随笔 - 113, 文章 - 1, 评论 - 0, 引用 - 0
聚类分析的定义:
聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程,其目的是在相似的基础上收集数据来分类。
传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。
聚类算法一般有五种方法,最主要的是划分方法和层次方法两种。划分聚类算法通过优化评价函数把数据集分割为K个部分,它需要K作为 输人参数。典型的分割聚类算法有K-means算法, K-medoids算法、CLARANS算法。层次聚类由不同层次的分割聚类组成,层次之间的分割具有嵌套的关系。它不需要输入参数,这是它优于分割聚类 算法的一个明显的优点,其缺点是终止条件必须具体指定。典型的分层聚类算法有BIRCH算法、DBSCAN算法和CURE算法等。
  对各聚类算法的比较研究基于以下5个标准:
  ① 是否适用于量,算法的效率是否满足大数据量高复杂性的要求;
  ② 是否能应付不同的数据类型,能否处理符号属性;
  ③ 是否能发现不同类型的聚类;
  ④ 是否能应付脏数据或异常数据;
  ⑤ 是否对数据的输入顺序不敏感。
  下面将在该框架下对各聚类算法作分析比较。
【K-means算法】
首先从n个数据对象任意选择 k
个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然
后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数.
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
实际应用于NLP的哪些方面??
【K-pototypes算法】
K-pototypes算法结合了K-means方法和根据K-means方法改进的能处理符号属性的K-modes方法,同K-means方法比,K-pototypes算法能够处理符号属性。
【Fuzzy算法】
首先建立Fuzzy相似矩阵,然后对其进行聚类。目前所见一般分为两种。
【CLARANS算法】(划分方法)
CLARANS算法即随机搜索聚类算法,是一种分割聚类办法。它首先随机选择一个点作为当前点,然后随机检查它周围不超过参数Max
neighbor个的一些邻接点,假如找到一个比它更好的邻接点,则把它移入该邻接点,否则把该点作为局部最小量。然后在随机选择一个点来寻找另一个局部最小量,直到找到的局部最小量书目达到用户要求为止。
CLARANS算法即随机搜索聚类算法,是一种分割聚类方法。它首先随机选择一个点作为当前点,然后随机检查它周围不超过参数Maxneighbor 个的一些邻接点,假如找到一个比它更好的邻接点,则把它移人该邻接点,否则把该点作为局部最小量。然后再随机选择一个点来寻找另一个局部最小量,直至所找 到的局部最小量数目达到用户要求为止。该算法要求聚类的对象必须都预先调人内存,并且需多次扫描数据集,这对大数据量而言,无论时间复杂度还是空间复杂度 都相当大。虽通过引人R-树结构对其性能进行改善,使之能够处理基于磁盘的大型数据库,但R*-树的构造和维护代价太大。该算法对脏数据和异常数据不敏 感,但对数据物人顺序异常敏感,且只能处理凸形或球形边界聚类。
【BIRCH算法】(层次方法)
核心是用一个聚类特征3元组表示一个簇的有关信息,从而使一簇点的表示可用对应的聚类特征,而不必用具体的一组点来表示。它通过构造满足分支因子和簇直径限制的聚类特征树来求聚类。BIRCH算法通过聚类特征可以方便地进行中心、半径、直径以及类内、类间距离的运算。
BIRCH算法即平衡迭代削减聚类法,其核心是用一个聚类特征3元组表示一个簇的有关信息,从而使一簇点的表示可用对应的聚类特征,而不必用具体的一 组点来表示。它通过构造满足分支因子和簇直径限制的聚类特征树来求聚类。BIRCH算法通过聚类特征可以方便地进行中心、半径、直径及类内、类间距离的运 算。算法的聚类特征树是一个具有两个参数分枝因子B和类直径T的高度平衡树。分枝因子规定了树的每个节点子女的最多个数,而类直径体现了对一类点的直径大 小的限制即这些点在多大范围内可以聚为一类,非叶子结点为它的子女的最大关键字,可以根据这些关键字进行插人索引,它总结了其子女的信息。
  聚类特征树可以动态构造,因此不要求所有数据读人内存,而可以在外存上逐个读人。新的数据项总是插人到树中与该数据距离最近的叶子中。如果插人后使得
该叶子的直径大于类直径T,则把该叶子节点分裂。其它叶子结点也需要检查是否超过分枝因子来判断其分裂与否,直至该数据插入到叶子中,并且满足不超过类直
径,而每个非叶子节点的子女个数不大于分枝因子。算法还可以通过改变类直径修改特征树大小,控制其占内存容量。
  BIRCH算法通过一次扫描就可以进行较好的聚类,由此可见,该算法适合于大数据量。对于给定的M兆内存空间,其空间复杂度为O(M),时间间复杂度
为O(dNBlnB(M/P)).其中d为维数,N为节点数,P为内存页的大小,B为由P决定的分枝因子。I/O花费与数据量成线性关系。BIRCH算法
只适用于类的分布呈凸形及球形的情况,并且由于BIRCH算法需提供正确的聚类个数和簇直径限制,对不可视的高维数据不可行。
【CURE算法】(层次方法)
CURE算法即使用代表点的聚类方法。该算法先把每个数据点看成一类,然后合并距离最近的类直到类个数为所要求的个数为止。CURE算法将传统对类的表示方法进行了改进,回避了用所有点或用中心和半径来表示一个类,而是从每一个类中抽取固定数量、分布较好的点作为描述此类的代表点,并将这些点乘以一个适当的收缩因子,使它们更靠近类的中心点。将一个类用代表点表示,使类的外延可以向非球形的形状扩展将其表达。
CURE算法即使用代表点的聚类方法。该算法先把每个数据点看成一类,然后合并距离最近的类直至类个数为所要求的个数为止。CURE算法将传统对类的 表示方法进行了改进,回避了用所有点或用中心和半径来表示一个类,而是从每一个类中抽取固定数量、分布较好的点作为描述此类的代表点,并将这些点乘以一个 适当的收缩因子,使它们更靠近类的中心点。将一个类用代表点表示,使得类的外延可以向非球形的形状扩展,从而可调整类的形状以表达那些非球形的类。另外, 收缩因子的使用减小了嗓音对聚类的影响。CURE算法采用随机抽样与分割相结合的办法来提高算法的空间和时间效率,并且在算法中用了堆和K-d树结构来提 高算法效率
【DBSCAN算法】(基于密度的方法)
利用类的密度连通性可以快速发现任意形状的类。对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目。
DBSCAN算法即基于密度的聚类算法。该算法利用类的密度连通性可以快速发现任意形状的类。其基本思想是:对于一个类中的每个对象,在其给定半径的 领域中包含的对象不能少于某一给定的最小数目。在DBSCAN算法中,发现一个类的过程是基于这样的事实:一个类能够被其中的任意一个核心对象所确定。为 了发现一个类,DBSCAN先从对象集D中找到任意一对象P,并查找D中关于关径Eps和最小对象数Minpts的从P密度可达的所有对象。如果P是核心 对象,即半径为Eps的P的邻域中包含的对象不少于Minpts,则根据算法,可以找到一个关于参数Eps和Minpts的类。如果P是一个边界点,则半 径为Eps的P邻域包含的对象少于Minpts,P被暂时标注为噪声点。然后,DBSCAN处理D中的下一个对象。
  密度可达对象的获取是通过不断执行区域查询来实现的。一个区域查询返回指定区域中的所有对象。为了有效地执行区域查询,DBSCAN算法使用了空间查
询R-树结构。在进行聚类前,必须建立针对所有数据的R*-树。另外,DBSCAN要求用户指定一个全局参数Eps(为了减少计算量,预先确定参数
Minpts)。为了确定取值,DBSCAN计算任意对象与它的第k个最临近的对象之间的距离。然后,根据求得的距离由小到大排序,并绘出排序后的图,称
做k-dist图。k-dist图中的横坐标表示数据对象与它的第k个最近的对象间的距离;纵坐标为对应于某一k-dist距离值的数据对象的个数。
R*-树的建立和k-dist图的绘制非常消耗时间。此外,为了得到较好的聚类结果,用户必须根据k-dist图,通过试探选定一个比较合适的Eps值。
DBSCAN算法不进行任何的预处理而直接对整个数据集进行聚类操作。当数据量非常大时,就必须有大内存量支持,I/O消耗也非常大。其时间复杂度为
O(nlogn)(n为数据量),聚类过程的大部分时间用在区域查询操作上。DBSCAN算法对参数Eps及Minpts非常敏感,且这两个参数很难确定。
CLIQUE算法(综合了基于密度和基于网格的算法)
  CLIQUE算法即自动子空间聚类算法。该算法利用自顶向上方法求出各个子空间的聚类单元。CLUQUE算法主要用于找出在高维数据空间中存在的低维
聚类。为了求出d维空间聚类,必须组合给出所有d-1维子空间的聚类,导致其算法的空间和时间效率都较低,而且要求用户输入两个参数:数据取值空间等间隔
距离和密度阔值。这2个参数与样木数据紧密相关,用户一般难以确定。CLIQUE算法对数据输人顺序不敏感。
基于上述分析,我们得到各聚类算法的比较结果,结论如下:
算法 算法效率 适合的数据类型 发现的聚类类型 对脏数据或异常数据的敏感性 对数据输入顺序的敏感性
BIRCH&&&&&& 高&&&&&&&&& 数值&&&&&&&&&&&& 凸形或球形&&&&&&&&&&& 不敏感&&&&&&&&&&&&&&&&& 不太敏感
DBSCAN&& 一般&&&&&&&& 数值&&&&&&&&&&& 任意形状&&&&&&&&&&&&&&& 敏感&&&&&&&&&&&&&&&&&&&&&& 敏感
CURE&&&&&& 较高&&&&&&&& 数值&&&&&&&&&& 任意形状&&&&&&&&&&&&&& 不敏感&&&&&&&&&&&&&&&&& 不太敏感
K-poto&&&& 一般&&&&& 数值和符号&&&&& 凸形或球形&&&&&&&&&&&& 敏感&&&&&&&&&&&&&&&&&&&& 一般
CLARANS 较低&&&&&&&& 数值&&&&&&&&&&& 凸形或球形&&&&&&&&&&& 不敏感&&&&&&&&&&&&&&&& 非常敏感
CUQUE&&& 较低&&&&&&&& 数值&&&&&&&&&&&& 凸形或球形&&&&&&&&&&&& 一般&&&&&&&&&&&&&&&&&&& 不敏感
由于每个方法都有其特点和不同的适用领域,在数据挖掘中,用户应该根据实际需要选择恰当的聚类算法。5012人阅读
大数据(10)
聚类算法总结
聚类算法的种类:基于划分聚类算法(partition clustering)
是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据
K-Means算法的扩展,采用简单匹配方法来度量分类型数据的相似度
k-prototypes:
结合了K-Means和K-Modes两种算法,能够处理混合型数据
k-medoids:
在迭代过程中选择簇中的某点作为聚点,PAM是典型的k-medoids算法
CLARA算法在PAM的基础上采用了抽样技术,能够处理大规模数据
CLARANS算法融合了PAM和CLARA两者的优点,是第一个用于空间数据库的聚类算法
Focused CLARAN:
采用了空间索引技术提高了CLARANS算法的效率
模糊集合理论引入聚类分析中并提出了PCM模糊聚类算法
基于层次聚类算法:
采用抽样技术先对数据集D随机抽取样本,再采用分区技术对样本进行分区,然后对每个分区局部聚类,最后对局部聚类进行全局聚类
也采用了随机抽样技术,该算法在计算两个对象的相似度时,同时考虑了周围对象的影响
CHEMALOEN(变色龙算法):
首先由数据集构造成一个K-最近邻图Gk ,再通过一个图的划分算法将图Gk 划分成大量的子图,每个子图代表一个初始子簇,最后用一个凝聚的层次聚类算法反复合并子簇,找到真正的结果簇
SBAC算法则在计算对象间相似度时,考虑了属性特征对于体现对象本质的重要程度,对于更能体现对象本质的属性赋予较高的权值
BIRCH算法利用树结构对数据集进行处理,叶结点存储一个聚类,用中心和半径表示,顺序处理每一个对象,并把它划分到距离最近的结点,该算法也可以作为其他聚类算法的预处理过程
BUBBLE算法则把BIRCH算法的中心和半径概念推广到普通的距离空间
BUBBLE-FM:
BUBBLE-FM算法通过减少距离的计算次数,提高了BUBBLE算法的效率
基于密度聚类算法:
DBSCAN算法是一种典型的基于密度的聚类算法,该算法采用空间索引技术来搜索对象的邻域,引入了“核心对象”和“密度可达”等概念,从核心对象出发,把所有密度可达的对象组成一个簇
算法通过泛化DBSCAN算法中邻域的概念,以适应空间对象的特点
OPTICS算法结合了聚类的自动性和交互性,先生成聚类的次序,可以对不同的聚类设置不同的参数,来得到用户满意的结果
FDC算法通过构造k-d tree把整个数据空间划分成若干个矩形空间,当空间维数较少时可以大大提高DBSCAN的效率
基于网格的聚类算法:
利用网格单元保存数据统计信息,从而实现多分辨率的聚类
WaveCluster:
在聚类分析中引入了小波变换的原理,主要应用于信号处理领域。(备注:小波算法在信号处理,图形图像,加密解密等领域有重要应用,是一种比较高深和牛逼的东西)
是一种结合了网格和密度的聚类算法
OPTIGRID:
基于神经网络的聚类算法:
自组织神经网络SOM:
该方法的基本思想是--由外界输入不同的样本到人工的自组织映射网络中,一开始时,输入样本引起输出兴奋细胞的位置各不相同,但自组织后会形成一些细胞群,它们分别代表了输入样本,反映了输入样本的特征
基于统计学的聚类算法:
COBWeb是一个通用的概念聚类方法,它用分类树的形式表现层次聚类
AutoClass:
是以概率混合模型为基础,利用属性的概率分布来描述聚类,该方法能够处理混合型的数据,但要求各属性相互独立
---------------------------------------------------------几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:
适合的数据类型
异常数据的抗干扰性
WaveCluster
K-Prototypes
---------------------------------------------------------目前聚类分析研究的主要内容:对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚类方法或者是提出一种新的聚类方法。以下将对传统聚类方法中存在的问题以及人们在这些问题上所做的努力做一个简单的总结:1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。然而在现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类数目,得到较好的聚类结果。2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是其计算代价又很大。因此如何解决这个问题成为当前的一个研究热点,有学者提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个问题。3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这就关系到一个计算效率的问题。有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降低了计算成本。4 处理大规模数据和高维数据的能力有待于提高。目前许多聚类方法处理小规模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、维度比较高的数据集。有文献提出了一种在高维空间挖掘映射聚类的方法PCKA(Projected
Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对高维数据进行聚类。5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大,因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。
目前看到的比较全面的分类算法,总结的还不错. 2.4.1 主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等。 (1)决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 主要的决策树算法有ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法等。它们在选择测试属性采用的技术、生成的决策树的结构、剪枝的方法以及时刻,能否处理大数据集等方面都有各自的不同之处。 (2)贝叶斯 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯(Naive Bayes)算法。这些算法主要利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。由于贝叶斯定理的成立本身需要一个很强的条件独立性假设前提,而此假设在实际情况中经常是不成立的,因而其分类准确性就会下降。为此就出现了许多降低独立性假设的贝叶斯分类算法,如TAN(Tree Augmented Na?ve
Bayes)算法,它是在贝叶斯网络结构的基础上增加属性对之间的关联来实现的。 (3)人工神经网络 人工神经网络(Artificial Neural Networks,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这种模型中,大量的节点(或称”神经元”,或”单元”)之间相互联接构成网络,即”神经网络”,以达到处理信息的目的。神经网络通常需要进行训练,训练的过程就是网络进行学习的过程。训练改变了网络节点的连接权的值使其具有分类的功能,经过训练的网络就可用于对象的识别。 目前,神经网络已有上百种不同的模型,常见的有BP网络、径向基RBF网络、Hopfield网络、随机神经网络(Boltzmann机)、竞争神经网络(Hamming网络,自组织映射网络)等。但是当前的神经网络仍普遍存在收敛速度慢、计算量大、训练时间长和不可解释等缺点。 (4)k-近邻 k-近邻(kNN,k-Nearest Neighbors)算法是一种基于实例的分类方法。该方法就是找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。k-近邻方法是一种懒惰学习方法,它存放样本,直到需要分类时才进行分类,如果样本集比较复杂,可能会导致很大的计算开销,因此无法应用到实时性很强的场合。 (5)支持向量机 支持向量机(SVM,Support Vector Machine)是Vapnik根据统计学习理论提出的一种新的学习方法[43] ,它的最大特点是根据结构风险最小化准则,以最大化分类间隔构造最优分类超平面来提高学习机的泛化能力,较好地解决了非线性、高维数、局部极小点等问题。对于分类问题,支持向量机算法根据区域中的样本计算该区域的决策曲面,由此确定该区域中未知样本的类别。 (6)基于关联规则的分类 关联规则挖掘是数据挖掘中一个重要的研究领域。近年来,对于如何将关联规则挖掘用于分类问题,学者们进行了广泛的研究。关联分类方法挖掘形如condset→C的规则,其中condset是项(或属性-值对)的集合,而C是类标号,这种形式的规则称为类关联规则(class association rules,CARS)。关联分类方法一般由两步组成:第一步用关联规则挖掘算法从训练数据集中挖掘出所有满足指定支持度和置信度的类关联规则;第二步使用启发式方法从挖掘出的类关联规则中挑选出一组高质量的规则用于分类。属于关联分类的算法主要包括CBA[44]
,ADT[45] ,CMAR[46] 等。 (7)集成学习(Ensemble Learning) 实际应用的复杂性和数据的多样性往往使得单一的分类方法不够有效。因此,学者们对多种分类方法的融合即集成学习进行了广泛的研究。集成学习已成为国际机器学习界的研究热点,并被称为当前机器学习四个主要研究方向之一。 集成学习是一种机器学习范式,它试图通过连续调用单个的学习算法,获得不同的基学习器,然后根据规则组合这些学习器来解决同一个问题,可以显著的提高学习系统的泛化能力。组合多个基学习器主要采用(加权)投票的方法,常见的算法有装袋[47] (Bagging),提升/推进[48, 49] (Boosting)等。 有关分类器的集成学习见图2-5。集成学习由于采用了投票平均的方法组合多个分类器,所以有可能减少单个分类器的误差,获得对问题空间模型更加准确的表示,从而提高分类器的分类准确度。 图2-5:分类器的集成学习 以上简单介绍了各种主要的分类方法,应该说其都有各自不同的特点及优缺点。对于数据库负载的自动识别,应该选择哪种方法呢?用来比较和评估分类方法的标准[50] 主要有:(1)预测的准确率。模型正确地预测新样本的类标号的能力;(2)计算速度。包括构造模型以及使用模型进行分类的时间;(3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;(4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;(5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。
阅读:7065  k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k。k均值是基于相似度的聚类,为没有标签的一簇实例分为一类。
  一 经典的k-均值聚类  
  思路:  
  1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可);
  2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离;把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离;
  3 根据二维数组保存的数据,重新计算每个聚簇新的质心;
  4 迭代2 和 3,直到收敛,即质心不再变化;
from numpy import *
def loadDataSet(fileName):
#general function to parse tab -delimited floats
dataMat = []
#assume last column is target value
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) #map all elements to float()
dataMat.append(fltLine)
return dataMat
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI & minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
  经典的k均值聚类有很大的缺点就是很容易收敛到局部最优,为了避免这种局部最优,我们引入了二分k-均值算法。
  二 二分k-均值聚类算法
  二分k-均值聚类算法是基于经典k-均值算法实现的;里面调用经典k-均值(k=2),把一个聚簇分成两个,迭代到分成k个停止;
  具体思路:
  1 把整个数据集看成一个聚簇,计算质心;并用同样的数据结构二维数组保存每个实例到质心的距离;
  2 对每一个聚簇进行2-均值聚类划分;
  3 计算划分后的误差,选择所有被划分的聚簇中总误差最小的划分保存;
  4 迭代2 和 3 直到聚簇数目达到k停止;
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] #create a list with one centroid
for j in range(m):#calc initial Error
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) & k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print "sseSplit, and notSplit: ",sseSplit,'--',sseNotSplit
if (sseSplit + sseNotSplit) & lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
return mat(centList), clusterAssment
  三 地理位置聚簇实例
  地理位置的经纬度正好是二维的,可以可视化出来,所以很适合聚类算法确定质心个数k值;值得注意的是,球面计算距离,不能简单的用欧式距离,而需要用球面距离公式,见函数distSLC;
  代码的含义给定n个俱乐部地址名称,然后使用urllib包,调用yahoo地图的API返回经纬度,调用我们上面实现的k均值聚类算法,找到聚簇的中心,最后利用matplotlib工具可视化出来;
import urllib
import json
def geoGrab(stAddress, city):
apiStem = 'http://where.yahooapis.com/geocode?'
#create a dict and constants for the goecoder
params = {}
params['flags'] = 'J'#JSON return type
params['appid'] = 'aaa0VN6k'
params['location'] = '%s %s' % (stAddress, city)
url_params = urllib.urlencode(params)
yahooApi = apiStem + url_params
#print url_params
print yahooApi
c=urllib.urlopen(yahooApi)
return json.loads(c.read())
from time import sleep
def massPlaceFind(fileName):
fw = open('places.txt', 'w')
for line in open(fileName).readlines():
line = line.strip()
lineArr = line.split('\t')
retDict = geoGrab(lineArr[1], lineArr[2])
if retDict['ResultSet']['Error'] == 0:
lat = float(retDict['ResultSet']['Results'][0]['latitude'])
lng = float(retDict['ResultSet']['Results'][0]['longitude'])
print "%s\t%f\t%f" % (lineArr[0], lat, lng)
fw.write('%s\t%f\t%f\n' % (line, lat, lng))
else: print "error fetching"
fw.close()
def distSLC(vecA, vecB):#Spherical Law of Cosines
a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \
cos(pi * (vecB[0,0]-vecA[0,0]) /180)
return arccos(a + b)*6371.0 #pi is imported with numpy
import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect=[0.1,0.1,0.8,0.8]
scatterMarkers=['s', 'o', '^', '8', 'p', \
'd', 'v', 'h', '&', '&']
axprops = dict(xticks=[], yticks=[])
ax0=fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1=fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
plt.show()
  四 总结
  优点:易实现;
  缺点:可能收敛到局部最小值,在大数据集上收敛较慢;
  适用数据类型:数值型;
阅读(...) 评论()

我要回帖

更多关于 cad定点等分 的文章

 

随机推荐