深入理解linux内核核与根文件系统的关系详解

这是我的一篇旧文,发表在 CSDN,现重新进行了整理发表到 JAVAEYE。

Linux 文件系统是相当复杂的,本文只分析虚拟文件系统的实现,对具体的文件系统不涉及。

即使是虚拟文件系统,要在一篇文章中讲清楚也是不可能的,况且我自己的理解也不够透彻。

为什么选择 Linux 2.4.30?因为可以参考《Linux 源码情景分析》一书,减少学习难度。

先介绍一些文件系统的基本概念:

1、一块磁盘(块设备),首先要按照某种文件系统格式(如 NTFS、EXT2)进行格式化,然后才能在其上进行创建目录、保存文件等操作。

2、 在 Linux 中,有“安装”文件系统和“卸载”文件系统的概念。一块经过格式化的“块设备”(不管是刚刚格式化完的,没有创建任何名录和文件;还是已经创建了目录和文件),只有先被“安装”,才能融入 Linux 的文件系统中,用户才可以在它上面进行正常的文件操作。

3、  Linux 把目录或普通文件,统一看成“目录节点”。通常一个“目录节点”具有两个重要属性:名称以及磁盘上实际对应的数据。本文中,“目录节点”有时简称为“节点”

“符号链接”是一种特殊的目录节点,它只有一个名称,没有实际数据。这个名称指向一个实际的目录节点。

4、  “接口结构”:在 内核代码中,经常可以看到一种结构,其成员全部是函数指针,例如:


 
这种结构的作用类似与 C++ 中的“接口类”,它是用 C 语言进行软件抽象设计时最重要的工具。通过它,将一组通用的操作抽象出来,核心的代码只针对这种“接口结构”进行操作,而这些函数的具体实现由不同的“子类”去完成。
以这个 file_operations“接口”为例,它是“目录节点”提供的操作接口。不同的文件系统需要提供这些函数的具体实现。

什么是虚拟文件系统(后文简称VFS)?
Linux 支持很多种文件系统,如 NTFS、EXT2、EXT3 等等,这些都是某种具体的文件系统的实现。
VFS 是一套代码框架(framework),它处于文件系统的使用者与具体的文件系统之间,将两者隔离开来。这种引入一个抽象层次的设计思想,即“上层不依赖于具体实现,而依赖于接口;下层不依赖于具体实现,而依赖于接口”,就是著名的“依赖反转”,它在 Linux内核中随处可见。

VFS框架的设计,需要满足如下需求:



1、 定义一套文件系统的统一概念
2、 在这套概念基础上,实现提供给上层用户的操作接口,如 open, read, write 等
3、 提供一套机制,让下层的具体的文件系统可融入 VFS 框架中,如文件系统的“注册”和“安装”
本文重点就是学习VFS的重要概念以及在此基础上的重要操作。

1、 VFS 通过树状结构来管理文件系统,树状结构的任何一个节点都是“目录节点”
2、 树状结构具有一个“根节点”
3、 VFS 通过“超级块”来了解一个具体文件系统的所有需要的信息。具体文件系统必须先向VFS注册,注册后,VFS就可以获得该文件系统的“超级块”。
4、 具体文件系统可被安装到某个“目录节点”上,安装后,具体文件系统才可以被使用
5、 用户对文件的操作,就是通过VFS 的接口,找到对应文件的“目录节点”,然后调用该“目录节点”对应的操作接口。

1、 绿色代表“根文件系统”
2、 黄色代表某一个文件系统 XXFS
3、 根文件系统安装到“根目录节点”上
4、 XXFS 安装到目录节点B上



1、 inode 用以描述“目录节点” ,它描述了一个目录节点物理上的属性,例如大小,创建时间,修改时间、uid、gid 等


4、 打开文件的过程就是寻找 “目录节点”对应的 inode 的过程
5、 文件被打开后,inode 和 file_operation 都已经在内存中建立,file_operations 的指针也已经指向了具体文件系统提供的函数,此后都文件的操作,都由这些函数来完成。
例如打开了一个普通文件 /root/file,其所在文件系统格式是 ext2,那么,内存中结构如下:


本来,inode 中应该包括“目录节点”的名称,但由于符号链接的存在,导致一个物理文件可能有多个文件名,因此把和“目录节点”名称相关的部分从 inode 结构中分开,放在一个专门的 dentry 结构中。这样:

2、 由于符号链接的存在,导致多个 dentry 可能对应到同一个 inode 上




super_block 保存了文件系统的整体信息,如访问权限;
 

在文件系统的操作中,经常需要获得一个“目录节点”对应的 inode,这个 inode 有可能已经存在于内存中了,也可能还没有,需要创建一个新的 inode,并从磁盘上读取相应的信息来填充。


 
 
在 alloc_inode() 中可以看到,如果具体文件系统提供了创建 inode 的方法,则由具体文件系统来负责创建,否则采用系统默认的的创建方法。
  
 
super_block 是在安装文件系统的时候创建的,后面会看到它和其它结构之间的关系。

一个具体的文件系统,必须首先向VFS注册,才能被使用。

文件系统注册的主要目的,就是让 VFS 创建该文件系统的“超级块”结构。
  
 
 
 
这个结构中最关键的就是 read_super() 这个函数指针,它就是用于创建并设置 super_block 的目的的。
因为安装一个文件系统的关键一步就是要为“被安装设备”创建和设置一个 super_block,而不同的具体的文件系统的 super_block 有自己特定的信息,因此要求具体的文件系统首先向内核注册,并提供 read_super() 的实现。

1、 一个经过格式化的块设备,只有安装后,才能融入 Linux 的 VFS 之中。
2、 安装一个文件系统,必须指定一个目录作为安装点。
3、 一个设备可以同时被安装到多个目录上。
4、 如果某个目录下原来有一些文件和子目录,一旦将一个设备安装到目录下后,则原有的文件和子目录消失。因为这个目录已经变成了一个安装点。
5、 一个目录节点下可以同时安装多个设备。
1、“根安装点”、“根设备”和“根文件系统”
安装一个文件系统,除了需要“被安装设备”外,还要指定一个“安装点”。“安装点”是已经存在的一个目录节点。例如把 /dev/sda1 安装到 /mnt/win 下,那么 /mnt/win 就是“安装点”。
可是文件系统要先安装后使用。因此,要使用 /mnt/win 这个“安装点”,必然要求它所在文件系统已也经被安装。
也就是说,安装一个文件系统,需要另外一个文件系统已经被安装。
这是一个鸡生蛋,蛋生鸡的问题:最顶层的文件系统是如何被安装的?
答案是,最顶层文件系统在内核初始化的时候被安装在“根安装点”上的,而根安装点不属于任何文件系统,它对应的 dentry 、inode 等结构是由内核在初始化阶段凭空构造出来的。
最顶层的文件系统叫做“根文件系统”。Linux 在启动的时候,要求用户必须指定一个“根设备”,内核在初始化阶段,将“根设备”安装到“根安装点”上,从而有了根文件系统。这样,文件系统才算准备就绪。此后,用户就可以通过 mount 命令来安装新的设备。
“安装”一个文件系统涉及“被安装设备”和“安装点”两个部分,安装的过程就是把“安装点”和“被安装设备”关联起来,这是通过一个“安装连接件”结构 vfsmount 来完成的。

每安装一次文件系统,会导致:

2、 为“被安装设备”创建一个 super_block,并由具体的文件系统来设置这个 super_block。(我们在“注册文件系统”一节将再来分析这一步)




在内核将根设备安装到“根安装点”上后,内存中有如下结构关系:




VFS 中一个最关键以及最频繁的操作,就是根据路径名寻找目标节点的 dentry 以及 inode 。






4、 由于 ‘win’ 是个“安装点”,因此需要找到“被安装设备”/dev/sda1 根目录节点的 dentry 和 inode,只要找到 vfsmount B,就可以完成这个任务。



可以看到,整个寻找过程是一个递归的过程。
完成寻找后,内存中结构如下,其中红色线条是寻找目标节点的路径


1、在寻找过程的第一步,如何得到“根文件系统”的根目录节点的 dentry?
答案是这个 dentry 是被保存在进程的 task_struct 中的。后面分析进程与文件系统关系的时候再说这个。



我们知道, vfsmount A、B、C 之间形成了一种父子关系,为什么不根据 A 来找到 B ,根据 B 找到 C 了?
这是因为一个文件系统可能同时被安装到不同的“安装点”上。



现在, vfsmount 与 dentry 之间的关系大致如下。可以看到:







在递归寻找目标节点的过程中,需要借助一个搜索辅助结构 nameidata,这是一个临时结构,仅仅用在寻找目标节点的过程中。
 

dentry 随着目录节点的深入而不断变化;
而 mnt 则在每进入一个新的文件系统后发生变化




有了这个结构,上一节的问题就可以得到解决了:


1、 “打开文件”结构 file
一个文件每被打开一次,就对应着一个 file 结构。
我们知道,每个文件对应着一个 dentry 和 inode,每打开一个文件,只要找到对应的 dentry 和 inode 不就可以了么?为什么还要引入这个 file 结构?
这是因为一个文件可以被同时打开多次,每次打开的方式也可以不一样。
而dentry 和 inode 只能描述一个物理的文件,无法描述“打开”这个概念。
因此有必要引入 file 结构,来描述一个“被打开的文件”。每打开一个文件,就创建一个 file 结构。
file 结构中包含以下信息:
打开这个文件的进程的 uid,pid



实际上,打开文件的过程正是建立file, dentry, inode 之间的关联的过程。


文件一旦被打开,数据结构之间的关系已经建立,后面对文件的读写以及其它操作都变得很简单。就是根据 fd 找到 file 结构,然后找到 dentry 和 inode,最后通过 inode->i_fop 中对应的函数进行具体的读写等操作即可。
十一、进程与文件系统的关联
最后,来了解一下一个进程,与文件系统有哪些关联。

一个进程可以打开多个文件,每打开一个文件,创建一个 file 结构。所有的 file 结构的指针保存在一个数组中。而文件描述符正是这个数组的下标。
我记得以前刚开始学习编程的时候,怎么都无法理解这个“文件描述符”的概念。现在从内核的角度去看,就很容易明白“文件描述符”是怎么回事了。用户仅仅看到一个“整数”,实际底层对应着的是 file, dentry, inode 等复杂的数据结构。
files_struct 用于管理这个“打开文件”表。
  

  
  
 
其中的 fd_arrar[] 就是“打开文件”表。


 

root 指向此进程的“根目录”,通常就是“根文件系统”的根目录 dentry
pwd 指向此进程当前所在目录的 dentry

rootmnt :指向“安装”根文件系统时创建的那个 vfsmount
pwdmnt:指向“安装”当前工作目录所在文件系统时创建的那个 vfsmount
这两个域用于初始化 nameidata 结构。
3、 进程与文件系统的结构关系图
下图描述了进程与文件系统之间的结构关系图:


1、《Linux 源码情景分析》上册
本文系本站原创,欢迎转载!

}一:前言前段时间在编译kernel的时候发现rootfs挂载不上。相同的root选项设置旧版的image却可以。为了彻底解决这个问题。研究了一下rootfs的挂载过程。特总结如下,希望能给这部份知识点比较迷茫的朋友一点帮助。二:rootfs的种类总的来说,rootfs分为两种:虚拟rootfs和真实rootfs.现在kernel的发展趋势是将更多的功能放到用户空间完成。以保持内核的精简。虚拟rootfs也是各linux发行厂商普遍采用的一种方式。可以将一部份的初始化工作放在虚拟的rootfs里完成。然后切换到真实的文件系统.在虚拟rootfs的发展过程中。又有以下几个版本:initramfs:Initramfs是在 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核将这个cpio包解开,并且将其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。这种这种方式的rootfs是包含在kernel cpio格式的rootfsimage-initrd:传统格式的rootfs关于这两种虚拟文件系统的制作请自行参阅其它资料三:rootfs文件系统的挂载过程这里说的rootfs不同于上面分析的rootfs。这里指的是系统初始化时的根结点。即/结点。它是其于内存的rootfs文件系统。这部份之前在>和文件系统中已经分析过。为了知识的连贯性这里再重复一次。Start_kernel()àmnt_init():void &root);}在这里,将rootfs文件系统挂载。它的挂载点默认为”/”.最后切换进程的根目录和当前目录为”/”.这也就是根目录的由来。不过这里只是初始化。等挂载完具体的文件系统之后,一般都会将根目录切换到具体的文件系统。所以在系统启动之后,用mount命令是看不到rootfs的挂载信息的.四:虚拟文件系统的挂载根目录已经挂上去了,可以挂载具体的文件系统了.在start_kernel()àrest_init()àkernel_init():static 0;}unpack_to_rootfs:顾名思义就是解压包,并将其释放至rootfs。它实际上有两个功能,一个是释放包,一个是查看包,看其是否属于cpio结构的包。功能选择是根据最后的一个参数来区分的.在这个函数里,对应我们之前分析的三种虚拟根文件系统的情况。一种是跟kernel融为一体的initramfs.在编译kernel的时候,通过链接脚本将其存放在__initramfs_start至__initramfs_end的区域。这种情况下,直接调用unpack_to_rootfs将其释放到根目录.如果不是属于这种形式的。也就是__initramfs_start和__initramfs_end的值相等,长度为零。不会做任何处理。退出.对应后两种情况。从代码中看到,必须要配制CONFIG_BLK_DEV_RAM才会支持image-initrd。否则全当成cpio-initrd的形式处理。对于是cpio-initrd的情况。直接将其释放到根目录。对于是image-initrd的情况。将其释放到/initrd.image.最后将initrd内存区域归入伙伴系统。这段内存就可以由操作系统来做其它的用途了。接下来,内核对这几种情况又是怎么处理的呢?不要着急。往下看:回到kernel_init()这个函数:static 0;}ramdisk_execute_command:在kernel解析引导参数的时候使用。如果用户指定了init文件路径,即使用了“init=”,就会将这个参数值存放到这里。如果没有指定init文件路径。默认为/init对应于前面一段的分析,我们知道,对于initramdisk和cpio-initrd的情况,都会将虚拟根文件系统释放到根目录。如果这些虚拟文件系统里有/init这个文件。就会转入到init_post()。Init_post()代码如下:static /bin/init,/bin/sh注意的是,run_init_process在调用相应程序运行的时候,用的是kernel_execve。也就是说调用进程会替换当前进程。只要上述任意一个文件调用成功,就不会返回到这个函数。如果上面几个文件都无法执行。打印出没有找到init文件的错误。对于image-hdr或者是虚拟文件系统中没有包含  sys_chroot(".");}这里有几个比较有意思的处理,首先用户可以用root=来指定根文件系统。它的值保存在saved_root_name中。如果用户指定了以mtd开始的字串做为它的根文件系统。就会直接去挂载。这个文件是mtdblock的设备文件。否则将设备结点文件转换为ROOT_DEV即设备节点号然后,转向initrd_load()执行initrd预处理后,再将具体的根文件系统挂载。注意到,在这个函数末尾。会调用sys_mount()来移动当前文件系统挂载点到”/”目录下。然后将根目录切换到当前目录。这样,根文件系统的挂载点就成为了我们在用户空间所看到的”/”了.对于其它根文件系统的情况,会先经过initrd的处理。即int  }}先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.到这里。文件系统挂载的全部内容就分析完了.五:小结在本小节里。分析了根文件系统的挂载流程。并对几个虚拟根文件系统的情况做了详细的分析。理解这部份,对我们构建linux嵌入式开发系统是很有帮助的.PS:参考资料:ibm技术论坛的> 

本文来自ChinaUnix博客,如果查看原文请点:


linux内核探秘-深入理解文件系统和驱动框架

详细描述了linux系统的文件系统架构,虚拟文件系统以及ext2文件系统,也详细介绍了驱动的框架,对于linux底层有很好的借鉴作用

我要回帖

更多关于 深入理解linux内核 的文章

 

随机推荐