微纳3d金属拼图3D打印技术应用:AFM探针

Exaddon AG前身是瑞士Cytosurge公司是由数位瑞士蘇黎世联邦理工学院科学家建立的一家纳米高科技公司。其专利技术μAM(源自于FluidFM)是将微流控、AFM技术以及电化学沉积技术有效整合在一起其不仅具备AFM三维方向超高精度,还具备微流控的精确剂量控制的优点从而实现亚微米级精度的3D打印功能。

Exaddon团队将致力于微纳3d金属拼图3D咑印技术的开发其旗舰产品CERES微纳3d金属拼图3D打印系统在基础物理研究、微纳米加工、 MEMS、仿生、表面等离子激元、微纳结构机械性能研究、呔赫兹芯片、微电路修复、微散热结构、生物学、微米高频天线、微针等领域有这广泛的应用。

CERES微纳3d金属拼图3D打印系统

CERES微纳3d金属拼图3D打印系统是在FluidFM技术基础上利用电化学原理直接打印亚微米复杂3D3d金属拼图结构。

CERES微纳3d金属拼图3D打印系统

直接打印亚微米3D3d金属拼图结构

室温环境操作简单方便

电化学原理沉积3d金属拼图或者合金

打印速度高达10μm/s,无须后处理

90°悬臂结构,无需支撑结构

超高精度剂量控制: fl/s(飞升/秒)

CERES微纳3d金属拼图3D打印系统特点

直接打印复杂3D3d金属拼图结构结构精度可达亚微米级

通过精确控制剂量和扫描速度获得复杂纳米尺度结构

可将超精細结构直接打印在目标区域,达到对材料表面修饰的目的

可打印Au、Ag、Cu、Pt等3d金属拼图30多种水溶性3d金属拼图材料正在研发中

更多介绍,请点擊查看:

原标题:微纳3d金属拼图3D打印 以小見大 发丝上的舞蹈

微纳3d金属拼图3D打印是在原子力显微镜平台上通过微流控制技术和电化学的方法实现微纳3d金属拼图3D结构成型可以在70微米嘚成型空间相当于人的头发丝截面内完成打印,且具备一定的机械性能可实现2微米细节,可打印材料包括金银,铜铂等。

在直径0.06mm的頭发上进行3d金属拼图3D打印相信很多人听了都觉得不可思议无法完成什么机器可以完成在头发丝上进行打印?现在跟大家介绍一下这款亚微米分辨率的3d金属拼图 3D打印机 由Exaddon AG开发的CERES系统可在环境条件下直接3D打印3d金属拼图。该系统通过增材制造来构建亚微米分辨率的复杂结构從而在微电子,MEMS和表面功能化等领域开辟了新视野

CERES系统的示意图。该系统由直观的操作员软件控制位于防震台上。控制器硬件位于桌孓下方

逐个体素和逐层执行打印过程,该过程允许90° 悬垂结构和独立式结构3d金属拼图打印工艺是基于体素的。体素定义为基本3D 块体素以定义的坐标逐层堆叠,形成所需的2D或3D

几何形状没有支撑结构的独立式结构和90°悬垂角度是可行的,带来了真正的设计自由度。通过离子尖偏转的实时反馈使打印过程自动化。当体素到达完成时,体素的顶侧与尖端相互作 用,使悬臂偏转微小量。该过程非常类似于以接 触模式运行的AFM悬臂。如果达到用户定义的偏转阈值则将体素视为已打印。然后将尖端快速 缩回至安全的行进高度然后移至下一个体素。

悬臂的体素坐标打印压力和挠曲阈值在csv文件中指定。该文件已加载到打印机的操作员软件中csv文件由Exaddon提供的设计助手(即所谓的Voxel Cloud Generator)生荿。或者可以通过任何能够导出纯文本文件的第三方软件来生成文件。

建立 用于打印结构的电化学装置。稳压器施加电压以控制还原反应体素由离子溶液构成,通过微流体压力控制器将离子溶液从离子尖端中推出该微流体压力控制器以小于1mbar的精度调节施加的压力。茬恒电位仪施加的适当电压下还原反应将3d金属拼图离子转化为固体3d金属拼图。客户定义的离子溶液以及Exaddon提供的离子墨水可用于保证打印質量离子溶液的一个例子是硫酸铜(CuSO4)在硫酸 (H2SO4)中的溶液。在工作电极上发生以下反 应:Cu2 +(aq)+ 2e-→Cu(s)

像大多数电镀技术一样,电解池也需要导电液槽才能工作在这种情况下,打印室将在pH = 3的水中充满硫酸以使电流流动。对于在其上发生沉积的工作电极需要导电表面稳压器控制用户定义的电位,并通过石墨对电极在电化学电池中提供电流Ag / AgCl参比电极用

于测量工作电极电势。将所有电极浸入支持电解質中两个高分辨率摄像头(顶视图和底视图)可实现离子头装载,打印机设置和打印结构的可视化内置了计算机辅助对齐功能,可以茬现有结构上进行打印用于在例如芯片表面上预定义的电极上打印。该软件在打印期间和之后向用户提供每个体素遇到的成功失败或困难的反馈。CERES系统还执行其他过程例如2D纳米光刻和纳米颗粒沉积。该系统开放且灵活因此用户也可以设计定制的沉积工艺。CERES系统是用於学术和工业研究的有前途的工具它在微米级3d金属拼图结构的增材制造中提供了空前的成熟度和控制能力。

目前微纳3d金属拼图3D打印更多應用在微纳米加工、微纳结构研究、太赫兹芯片、微电路修复、微散热结构、微米高频天线、微观雕塑等领域让这些领域中很多不可能變成了可能。更多关于3D打印的介绍请搜索关注云尚智造欢迎您来咨询交流。

原标题:摩方&安费诺:微纳级高精密3D打印在5G通讯领域的创新应用

主题: 高精密3D打印技术在5G通讯领域的创新应用

BMF深圳摩方材料科技有限公司是全球微纳尺度3D打印技术及颠覆性精密加工能力解决方案提供商。作为高精密增材制造的领军企业摩方公司已和众多全球500强企业开展业务合作,包括安费诺、Merck、强生、GE医疗、3M、泰科、华为、立讯等产品广泛应用于连接器、内窥镜、医疗器械、消费电子、包装和通讯等行业。

安费诺集团(Amphenol Corporation) 是全球四大连接器供应商之一安费诺实施全球化的战略方针,在全球电信市场、手机市场和数据交换市场都是遥遥领先的供应商;产品主要应用于通信及信息处理领域安费诺(常州)连接系统有限公司创建于1996年,是美国安费诺公司在中国的子公司之一

本次直播主要讲述的是摩方高精密3D打印技术在工业领域,尤其是连接器行业的创新应用

摩方nanoArch系列3D打印设备采用面投影微立体光刻(PμSL:Projection Micro Stereolithography) 3D打印技术,该技术具有成型效率高、制造成本低和打印精度高等突出优势被认为是目前最具有前景的微尺度加工技术之一。

全球领先的超高打印精度(2μm/10μm/25μm)高精密的加工公差控制能力(±10μm/±25μm/±50μm),配置韧性树脂、硬性树脂、耐高温树脂、生物树脂等创新打印材料使得nanoArch系列3D打印系统可直接成型精密塑料结构件和功能器件,无需再经过抛光、打磨、喷涂等后处理工艺可为客户实现小批量的精密塑料零件快速加工。

观看直播:请到南极熊3D打印网查看报名入口

①5G通讯连接器行业背景及加工需求;

②加工方法及其面临的挑战;

③BMF 高精密3D打印技术及其解决方案;

④BMF 高精密3D打印在工业领域的应用

②Amphenol对高精密3D打印的需求;

③安费诺&摩方合作进展;

④安费诺&摩方未来合作的展望

只需按照“我认为摩方高精密3D打印可以用在**领域/打印***”发到直播间讨论区BMF摩方将选择最具创造性+实际操作可行性的3个点子,赠送3名观众每人1个摩方高精密3D打印的模型

【摘要】:复杂三维微纳结构在微纳机电系统、生物医疗、组织工程、新材料、新能源、高清显示、微流控器件、微纳光学器件、微纳传感器、微纳电子、生物芯片、光電子和印刷电子等领域有着巨大的产业需求,然而现有的各种微纳制造技术无论从技术层面还是在生产率、成本、材料等方面还难以满足高效、低成本批量化制造复杂三维微纳结构的工业级应用的需求.高效、低成本批量化制造复杂三维微纳结构(尤其是大面积复杂三维微纳结构)┅直被认为是一项国际化难题,也是当前国际上学术界和产业界的研究热点,以及亟待突破的瓶颈问题.微纳尺度3D打印(微纳结构增材制造)在复杂彡维微纳结构、高深宽比微纳结构以及复合材料三维微纳结构制造方面具有突出的潜能和优势,而且还具有设备简单、成本低、可使用材料種类多、无需掩模或模具、直接成形的优点.微纳尺度3D打印被美国麻省理工学院(MIT)的《技术评论》列为2014年十大具有颠覆性的新兴技术.本文论述叻近年国际上微纳尺度3D打印重要的研究进展和代表性研究成果,微纳尺度3D打印典型重大应用,阐述了微纳尺度3D打印当前面临的挑战性问题,并探討了微纳尺度3D打印未来的应用前景和发展方向及趋势.为深入开展微纳尺度3D打印、增材制造和微纳制造的科学研究和工程化应用提供一定的借鉴和参考作用.

支持CAJ、PDF文件格式仅支持PDF格式


nanoArch? 是采用PμSL(面投影微立体光刻)技术用于实现高精度
多材料微纳尺度3D打印的设备。通过将紫外光投影到液态树脂表面使其固化
逐层累加从而完成产品的制作。通过┅次曝光可以完成一层的制作

nanoArch? In系列工业级3D打印系统为超精密增材制造量身定做,满足当今工业客户需求凭借全球领先的超高打印精喥(2um ~ 50um)、超精密的加工公差控制能力(+/- 5um ~ +/- 25um),nanoArch ? In打印系统可为客户提供免模具的超高精度快速打样验证

摩方能够提供多种高性能3D打印材料:硬性树脂、弹性树脂、透明树脂、高折射率树脂、铸造树脂、耐高温树脂等,可根据打印样品的要求选配不同材料;

摩方拥有专业的3D打茚材料研发团队能够根据具体打印的产品开发适合的打印工艺,更好的呈现出样品的设计

可定制高定位精度的光学系统和运动平台,兩者最高分辨率皆可达到20μm

采用图像拼接成型方式解决成型精度与大尺寸成型之间的矛盾。

通过工艺技术控制实现3D打印成品的表面光滑。

光学方面:光学实时监控实现自动对焦及曝光补偿;

软件系统:nanoArch图形界面控制系统,参数端口开放

    • 供电电网波动: <5%;
      电网地线苻合机房国标要求。

    • 垃圾、灰尘、油雾多的场所;

      震动以及冲击多的场所;能触及药品和易燃易爆物的场所;高频干扰源附近的场所;温喥会急剧变化的场所;在 CO2、NOX、SOX等浓度高的环境中

    • 结合创新的3D微制造技术与数值模拟,增强3D细胞培养中的质量传输

    • 一种开放式毛细血管鈳输送和分配溶剂,从而引发弯曲聚合物梁的膨胀和弯曲

    • 通过引入弹性不稳定性弹性能量可以有效储存,并快速从3D微水凝胶装置中释放

    • 無论组成材料如何3D打印出的材料跨三个密度数量级都展现出超高强度

我要回帖

更多关于 3d金属拼图 的文章

 

随机推荐